用于超平衡静电储能的纳米粘土增强聚合物复合电介质

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaozheng Liang, Quan Li, Yangjun Ren, Weimin Xie, Aidong Tang, Huaming Yang
{"title":"用于超平衡静电储能的纳米粘土增强聚合物复合电介质","authors":"Xiaozheng Liang, Quan Li, Yangjun Ren, Weimin Xie, Aidong Tang, Huaming Yang","doi":"10.1002/adfm.202408719","DOIUrl":null,"url":null,"abstract":"The vast energy storage potential of polymer composite dielectrics in high pulse power sources stands in stark contrast to the unbalanced improvements in discharge energy density (U<jats:sub>d</jats:sub>), charge–discharge efficiency (η), and dielectric strength (E<jats:sub>b</jats:sub>) as reported currently. Herein, a multistage coupled interface engineering design is proposed: a novel gradient alternating dielectric buffer layer (G‐A‐DBL) is constructed, which consists of inorganic low‐k nanoclay aluminosilicate layer and high‐k ferroelectric layer assembled in a highly oriented alternation as a basic unit and gradient distribution in polymer matrix. This design achieves electric field confinement from the nanoscale to the macroscopic level and achieves an ultra‐balanced enhancement effect, resulting in a U<jats:sub>d</jats:sub> of 28.5 J cm<jats:sup>−3</jats:sup>, an η of 80%, and an E<jats:sub>b</jats:sub> of 676 kV mm<jats:sup>−1</jats:sup>. The universal charge retention ability of charge traps from aluminosilicate heterogeneous skeletons is demonstrated by combining density functional theory calculations and scanning probe measurements. The G‐A‐DBL design integrates traditional charge trapping, heterostructure formation, and gradient modulation, effectively suppressing the entire process of carrier excitation, transport, and before capture. This work advances the basic understanding of charge confinement within inorganic interface charge traps, demonstrating the most well‐balanced enhancement effect and potential for broad application across dielectric polymer nanocomposites.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoclay Reinforced Polymer Composite Dielectrics for Ultra‐Balanced Electrostatic Energy Storage\",\"authors\":\"Xiaozheng Liang, Quan Li, Yangjun Ren, Weimin Xie, Aidong Tang, Huaming Yang\",\"doi\":\"10.1002/adfm.202408719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vast energy storage potential of polymer composite dielectrics in high pulse power sources stands in stark contrast to the unbalanced improvements in discharge energy density (U<jats:sub>d</jats:sub>), charge–discharge efficiency (η), and dielectric strength (E<jats:sub>b</jats:sub>) as reported currently. Herein, a multistage coupled interface engineering design is proposed: a novel gradient alternating dielectric buffer layer (G‐A‐DBL) is constructed, which consists of inorganic low‐k nanoclay aluminosilicate layer and high‐k ferroelectric layer assembled in a highly oriented alternation as a basic unit and gradient distribution in polymer matrix. This design achieves electric field confinement from the nanoscale to the macroscopic level and achieves an ultra‐balanced enhancement effect, resulting in a U<jats:sub>d</jats:sub> of 28.5 J cm<jats:sup>−3</jats:sup>, an η of 80%, and an E<jats:sub>b</jats:sub> of 676 kV mm<jats:sup>−1</jats:sup>. The universal charge retention ability of charge traps from aluminosilicate heterogeneous skeletons is demonstrated by combining density functional theory calculations and scanning probe measurements. The G‐A‐DBL design integrates traditional charge trapping, heterostructure formation, and gradient modulation, effectively suppressing the entire process of carrier excitation, transport, and before capture. This work advances the basic understanding of charge confinement within inorganic interface charge traps, demonstrating the most well‐balanced enhancement effect and potential for broad application across dielectric polymer nanocomposites.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202408719\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202408719","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物复合电介质在高脉冲电源中具有巨大的储能潜力,但与之形成鲜明对比的是,目前所报道的放电能量密度(Ud)、充放电效率(η)和介电强度(Eb)的提高并不平衡。本文提出了一种多级耦合界面工程设计:构建了一种新型梯度交变介电缓冲层(G-A-DBL),该缓冲层由无机低 K 纳米钙钛矿铝硅酸盐层和高 K 铁电层以高度取向交替的方式组装而成,作为基本单元并梯度分布于聚合物基体中。这种设计实现了从纳米级到宏观级的电场限制,达到了超平衡增强效应,使 Ud 达到 28.5 J cm-3,η 达到 80%,Eb 达到 676 kV mm-1。通过结合密度泛函理论计算和扫描探针测量,证明了铝硅酸盐异质骨架电荷阱具有普遍的电荷保持能力。G-A-DBL 设计集成了传统的电荷捕获、异质结构形成和梯度调制,有效抑制了载流子激发、传输和捕获前的整个过程。这项工作推进了对无机界面电荷陷阱内电荷禁锢的基本理解,展示了最均衡的增强效应,并具有在介电聚合物纳米复合材料中广泛应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoclay Reinforced Polymer Composite Dielectrics for Ultra‐Balanced Electrostatic Energy Storage
The vast energy storage potential of polymer composite dielectrics in high pulse power sources stands in stark contrast to the unbalanced improvements in discharge energy density (Ud), charge–discharge efficiency (η), and dielectric strength (Eb) as reported currently. Herein, a multistage coupled interface engineering design is proposed: a novel gradient alternating dielectric buffer layer (G‐A‐DBL) is constructed, which consists of inorganic low‐k nanoclay aluminosilicate layer and high‐k ferroelectric layer assembled in a highly oriented alternation as a basic unit and gradient distribution in polymer matrix. This design achieves electric field confinement from the nanoscale to the macroscopic level and achieves an ultra‐balanced enhancement effect, resulting in a Ud of 28.5 J cm−3, an η of 80%, and an Eb of 676 kV mm−1. The universal charge retention ability of charge traps from aluminosilicate heterogeneous skeletons is demonstrated by combining density functional theory calculations and scanning probe measurements. The G‐A‐DBL design integrates traditional charge trapping, heterostructure formation, and gradient modulation, effectively suppressing the entire process of carrier excitation, transport, and before capture. This work advances the basic understanding of charge confinement within inorganic interface charge traps, demonstrating the most well‐balanced enhancement effect and potential for broad application across dielectric polymer nanocomposites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信