Andreas Evertz, Jonathan Pleuß, Birger Reitz and Ludger Overmeyer
{"title":"用于集成到光电电路板中的柔性印刷聚合物波导","authors":"Andreas Evertz, Jonathan Pleuß, Birger Reitz and Ludger Overmeyer","doi":"10.1088/2058-8585/ad5c7b","DOIUrl":null,"url":null,"abstract":"Electro-optical circuit boards (EOCBs) offer great potential for short-ranged data transmission in highly electro-magnetic inflicted environments. Finding a cost-efficient way to manufacture EOCB only using additive printing processes could establish, increase, and secure data transmission in PCB systems. Flexo printing is an efficient manufacturing process that combines high contour resolution and layout flexibility to create optical waveguides. Previous research has shown that printing waveguides on a polymethylmethacrylate substrate can enable optical data transmission for up to 20 cm. However, a thermo-resistant polyimide (PI) substrate is needed to integrate printed waveguides into PCB. Since PI does not meet optical demands, waveguide cores must be separated by printed optical cladding. This research aims to investigate the additive printing process, which stacks various polymers to achieve waveguides that are ready for integration. Further, the integration in PCB is validated according to functional testing of the optical structures. An entire manufacturing process for printed EOCB is presented, which enables the investigation of optical coupling processes in upcoming research.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":"39 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexo-printed polymer waveguides for integration in electro-optical circuit boards\",\"authors\":\"Andreas Evertz, Jonathan Pleuß, Birger Reitz and Ludger Overmeyer\",\"doi\":\"10.1088/2058-8585/ad5c7b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-optical circuit boards (EOCBs) offer great potential for short-ranged data transmission in highly electro-magnetic inflicted environments. Finding a cost-efficient way to manufacture EOCB only using additive printing processes could establish, increase, and secure data transmission in PCB systems. Flexo printing is an efficient manufacturing process that combines high contour resolution and layout flexibility to create optical waveguides. Previous research has shown that printing waveguides on a polymethylmethacrylate substrate can enable optical data transmission for up to 20 cm. However, a thermo-resistant polyimide (PI) substrate is needed to integrate printed waveguides into PCB. Since PI does not meet optical demands, waveguide cores must be separated by printed optical cladding. This research aims to investigate the additive printing process, which stacks various polymers to achieve waveguides that are ready for integration. Further, the integration in PCB is validated according to functional testing of the optical structures. An entire manufacturing process for printed EOCB is presented, which enables the investigation of optical coupling processes in upcoming research.\",\"PeriodicalId\":51335,\"journal\":{\"name\":\"Flexible and Printed Electronics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flexible and Printed Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-8585/ad5c7b\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/ad5c7b","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Flexo-printed polymer waveguides for integration in electro-optical circuit boards
Electro-optical circuit boards (EOCBs) offer great potential for short-ranged data transmission in highly electro-magnetic inflicted environments. Finding a cost-efficient way to manufacture EOCB only using additive printing processes could establish, increase, and secure data transmission in PCB systems. Flexo printing is an efficient manufacturing process that combines high contour resolution and layout flexibility to create optical waveguides. Previous research has shown that printing waveguides on a polymethylmethacrylate substrate can enable optical data transmission for up to 20 cm. However, a thermo-resistant polyimide (PI) substrate is needed to integrate printed waveguides into PCB. Since PI does not meet optical demands, waveguide cores must be separated by printed optical cladding. This research aims to investigate the additive printing process, which stacks various polymers to achieve waveguides that are ready for integration. Further, the integration in PCB is validated according to functional testing of the optical structures. An entire manufacturing process for printed EOCB is presented, which enables the investigation of optical coupling processes in upcoming research.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.