Benjamin Bernard, Alessandro Tadini, Pablo Samaniego, Andrea Bevilacqua, Francisco J. Vasconez, Alvaro Aravena, Mattia de’ Michieli Vitturi, Silvana Hidalgo
{"title":"从监测数据、历史编年史和专家征询意见中制定危害情景:厄瓜多尔桑盖火山案例研究","authors":"Benjamin Bernard, Alessandro Tadini, Pablo Samaniego, Andrea Bevilacqua, Francisco J. Vasconez, Alvaro Aravena, Mattia de’ Michieli Vitturi, Silvana Hidalgo","doi":"10.1007/s00445-024-01754-4","DOIUrl":null,"url":null,"abstract":"<p>Sangay volcano is considered as one of the most active volcanoes worldwide. Nevertheless, due to its remote location and low-impact eruptions, its eruptive history and hazard scenarios are poorly constrained. In this work, we address this issue by combining an analysis of monitoring data and historical chronicles with expert elicitation. During the last 400 years, we recognize periods of quiescence, weak, and enhanced eruptive activity, lasting from several months to several years, punctuated by eruptive pulses, lasting from a few hours to a few days. Sangay volcano has been mainly active since the seventeenth century, with weak eruptive activity as the most common regime, although there have also been several periods of quiescence. During this period, eruptive pulses with VEI 1–3 occurred mainly during enhanced eruptive activity and produced far-reaching impacts due to ash fallout to the west and long-runout lahars to the south-east. Four eruptive pulse scenarios are considered in the expert elicitation: strong ash venting (SAV, VEI 1–2), violent Strombolian (VS, VEI 2–3), sub-Plinian (SPL, VEI 3–4), and Plinian (PL, VEI 4–5). SAV is identified as the most likely scenario, while PL has the smallest probability of occurrence. The elicitation results show high uncertainty about the probability of occurrence of VS and SPL. Large uncertainties are also observed for eruption duration and bulk fallout volume for all eruptive scenarios, while average column height is better characterized, particularly for SAV and VS. We interpret these results as a consequence of the lack of volcano-physical data, which could be reduced with further field studies. This study shows how historical reconstruction and expert elicitation can help to develop hazard scenarios with uncertainty assessment for poorly known volcanoes, representing a first step towards the elaboration of appropriate hazard maps and subsequent planning.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"39 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing hazard scenarios from monitoring data, historical chronicles, and expert elicitation: a case study of Sangay volcano, Ecuador\",\"authors\":\"Benjamin Bernard, Alessandro Tadini, Pablo Samaniego, Andrea Bevilacqua, Francisco J. Vasconez, Alvaro Aravena, Mattia de’ Michieli Vitturi, Silvana Hidalgo\",\"doi\":\"10.1007/s00445-024-01754-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sangay volcano is considered as one of the most active volcanoes worldwide. Nevertheless, due to its remote location and low-impact eruptions, its eruptive history and hazard scenarios are poorly constrained. In this work, we address this issue by combining an analysis of monitoring data and historical chronicles with expert elicitation. During the last 400 years, we recognize periods of quiescence, weak, and enhanced eruptive activity, lasting from several months to several years, punctuated by eruptive pulses, lasting from a few hours to a few days. Sangay volcano has been mainly active since the seventeenth century, with weak eruptive activity as the most common regime, although there have also been several periods of quiescence. During this period, eruptive pulses with VEI 1–3 occurred mainly during enhanced eruptive activity and produced far-reaching impacts due to ash fallout to the west and long-runout lahars to the south-east. Four eruptive pulse scenarios are considered in the expert elicitation: strong ash venting (SAV, VEI 1–2), violent Strombolian (VS, VEI 2–3), sub-Plinian (SPL, VEI 3–4), and Plinian (PL, VEI 4–5). SAV is identified as the most likely scenario, while PL has the smallest probability of occurrence. The elicitation results show high uncertainty about the probability of occurrence of VS and SPL. Large uncertainties are also observed for eruption duration and bulk fallout volume for all eruptive scenarios, while average column height is better characterized, particularly for SAV and VS. We interpret these results as a consequence of the lack of volcano-physical data, which could be reduced with further field studies. This study shows how historical reconstruction and expert elicitation can help to develop hazard scenarios with uncertainty assessment for poorly known volcanoes, representing a first step towards the elaboration of appropriate hazard maps and subsequent planning.</p>\",\"PeriodicalId\":55297,\"journal\":{\"name\":\"Bulletin of Volcanology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Volcanology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00445-024-01754-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-024-01754-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Developing hazard scenarios from monitoring data, historical chronicles, and expert elicitation: a case study of Sangay volcano, Ecuador
Sangay volcano is considered as one of the most active volcanoes worldwide. Nevertheless, due to its remote location and low-impact eruptions, its eruptive history and hazard scenarios are poorly constrained. In this work, we address this issue by combining an analysis of monitoring data and historical chronicles with expert elicitation. During the last 400 years, we recognize periods of quiescence, weak, and enhanced eruptive activity, lasting from several months to several years, punctuated by eruptive pulses, lasting from a few hours to a few days. Sangay volcano has been mainly active since the seventeenth century, with weak eruptive activity as the most common regime, although there have also been several periods of quiescence. During this period, eruptive pulses with VEI 1–3 occurred mainly during enhanced eruptive activity and produced far-reaching impacts due to ash fallout to the west and long-runout lahars to the south-east. Four eruptive pulse scenarios are considered in the expert elicitation: strong ash venting (SAV, VEI 1–2), violent Strombolian (VS, VEI 2–3), sub-Plinian (SPL, VEI 3–4), and Plinian (PL, VEI 4–5). SAV is identified as the most likely scenario, while PL has the smallest probability of occurrence. The elicitation results show high uncertainty about the probability of occurrence of VS and SPL. Large uncertainties are also observed for eruption duration and bulk fallout volume for all eruptive scenarios, while average column height is better characterized, particularly for SAV and VS. We interpret these results as a consequence of the lack of volcano-physical data, which could be reduced with further field studies. This study shows how historical reconstruction and expert elicitation can help to develop hazard scenarios with uncertainty assessment for poorly known volcanoes, representing a first step towards the elaboration of appropriate hazard maps and subsequent planning.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.