纯 H2S 在 6227.506-6236.844 和 6244.188-6245.348 cm-1 范围内的吸收光谱:吸收线位置和强度、自扩和自移系数

IF 0.9 Q4 OPTICS
V. A. Kapitanov, Ya. Ya. Ponurovskii
{"title":"纯 H2S 在 6227.506-6236.844 和 6244.188-6245.348 cm-1 范围内的吸收光谱:吸收线位置和强度、自扩和自移系数","authors":"V. A. Kapitanov,&nbsp;Ya. Ya. Ponurovskii","doi":"10.1134/S1024856024700180","DOIUrl":null,"url":null,"abstract":"<p>The absorption spectrum of the H<sub>2</sub>S molecule is recorded with high spectral resolution (0.00016 cm<sup>−1</sup>) and threshold sensitivity (∼1E-26 cm/molec.) in the 6227.506–6236.844 and 6244.188–6245.348 cm<sup>−1</sup> spectral ranges at room temperature and pressures of 0.001–0.06 atm for the first time. The measurements were performed at the General Physics Institute, Russian Academy of Sciences, at a high-sensitivity high-resolution diode laser spectrometer with a signal-to-noise ratio of more than 10 000. Line center shift coefficients Δ<sub>0</sub>/<i>P</i> and collisional widths Γ<sub>2</sub>/<i>P</i> are estimated for the first time; new spectral lines have been recorded. The experimentally estimated line centers differ from the calculated positions of line centers in the HITRAN database by Δν = (ν<sub>H</sub> − ν<sub>exp</sub>) × 10<sup>3</sup> cm<sup>−1</sup> ≈ 0.001–0.01 cm<sup>−1</sup>. The intensity estimates coincide much worse, the relative differences 100% × (<i>S</i><sub>H</sub> − <i>S</i><sub>exp</sub>)/<i>S</i><sub>H</sub> amount to tens of percent; the intensities of five lines differ by hundreds of percent or more.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorption Spectrum of Pure H2S in the 6227.506–6236.844 and 6244.188–6245.348 cm−1 Ranges: Absorption Line Positions and Intensities, Self-Broadening and Self-Shift Coefficients\",\"authors\":\"V. A. Kapitanov,&nbsp;Ya. Ya. Ponurovskii\",\"doi\":\"10.1134/S1024856024700180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The absorption spectrum of the H<sub>2</sub>S molecule is recorded with high spectral resolution (0.00016 cm<sup>−1</sup>) and threshold sensitivity (∼1E-26 cm/molec.) in the 6227.506–6236.844 and 6244.188–6245.348 cm<sup>−1</sup> spectral ranges at room temperature and pressures of 0.001–0.06 atm for the first time. The measurements were performed at the General Physics Institute, Russian Academy of Sciences, at a high-sensitivity high-resolution diode laser spectrometer with a signal-to-noise ratio of more than 10 000. Line center shift coefficients Δ<sub>0</sub>/<i>P</i> and collisional widths Γ<sub>2</sub>/<i>P</i> are estimated for the first time; new spectral lines have been recorded. The experimentally estimated line centers differ from the calculated positions of line centers in the HITRAN database by Δν = (ν<sub>H</sub> − ν<sub>exp</sub>) × 10<sup>3</sup> cm<sup>−1</sup> ≈ 0.001–0.01 cm<sup>−1</sup>. The intensity estimates coincide much worse, the relative differences 100% × (<i>S</i><sub>H</sub> − <i>S</i><sub>exp</sub>)/<i>S</i><sub>H</sub> amount to tens of percent; the intensities of five lines differ by hundreds of percent or more.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在室温和 0.001-0.06 atm 的压力下,首次在 6227.506-6236.844 和 6244.188-6245.348 cm-1 光谱范围内以高光谱分辨率(0.00016 cm-1)和阈值灵敏度(∼1E-26 cm/molec.)记录了 H2S 分子的吸收光谱。测量在俄罗斯科学院普通物理研究所的高灵敏度、高分辨率二极管激光光谱仪上进行,信噪比超过 10 000。首次估算了线中心移动系数 Δ0/P 和碰撞宽度 Γ2/P;记录了新的光谱线。实验估算的线中心与 HITRAN 数据库中计算的线中心位置相差 Δν = (νH - νexp) × 103 cm-1 ≈ 0.001-0.01 cm-1。强度估计值的重合度更差,相对差异 100% × (SH - Sexp)/SH 为百分之几十;五条线的强度相差百分之几百甚至更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Absorption Spectrum of Pure H2S in the 6227.506–6236.844 and 6244.188–6245.348 cm−1 Ranges: Absorption Line Positions and Intensities, Self-Broadening and Self-Shift Coefficients

Absorption Spectrum of Pure H2S in the 6227.506–6236.844 and 6244.188–6245.348 cm−1 Ranges: Absorption Line Positions and Intensities, Self-Broadening and Self-Shift Coefficients

Absorption Spectrum of Pure H2S in the 6227.506–6236.844 and 6244.188–6245.348 cm−1 Ranges: Absorption Line Positions and Intensities, Self-Broadening and Self-Shift Coefficients

The absorption spectrum of the H2S molecule is recorded with high spectral resolution (0.00016 cm−1) and threshold sensitivity (∼1E-26 cm/molec.) in the 6227.506–6236.844 and 6244.188–6245.348 cm−1 spectral ranges at room temperature and pressures of 0.001–0.06 atm for the first time. The measurements were performed at the General Physics Institute, Russian Academy of Sciences, at a high-sensitivity high-resolution diode laser spectrometer with a signal-to-noise ratio of more than 10 000. Line center shift coefficients Δ0/P and collisional widths Γ2/P are estimated for the first time; new spectral lines have been recorded. The experimentally estimated line centers differ from the calculated positions of line centers in the HITRAN database by Δν = (νH − νexp) × 103 cm−1 ≈ 0.001–0.01 cm−1. The intensity estimates coincide much worse, the relative differences 100% × (SHSexp)/SH amount to tens of percent; the intensities of five lines differ by hundreds of percent or more.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信