质量为零的薛定谔-泊松系统的索波列夫极限情况

Pub Date : 2024-07-04 DOI:10.1002/mana.202300514
Giulio Romani
{"title":"质量为零的薛定谔-泊松系统的索波列夫极限情况","authors":"Giulio Romani","doi":"10.1002/mana.202300514","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of positive solutions for a class of systems which strongly couple a quasilinear Schrödinger equation driven by a weighted <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-Laplace operator and without the mass term, and a higher-order fractional Poisson equation. Since the system is set in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>N</mi>\n </msup>\n <annotation>$\\mathbb {R}^N$</annotation>\n </semantics></math>, the limiting case for the Sobolev embedding, we consider nonlinearities with exponential growth. Existence is proved relying on the study of a corresponding Choquard equation in which the Riesz kernel is a logarithm, hence sign-changing and unbounded from above and below. This is in turn solved by means of a variational approximating procedure for an auxiliary Choquard equation, where the logarithm is uniformly approximated by polynomial kernels. Our results are new even in the planar case <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$N=2$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schrödinger–Poisson systems with zero mass in the Sobolev limiting case\",\"authors\":\"Giulio Romani\",\"doi\":\"10.1002/mana.202300514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the existence of positive solutions for a class of systems which strongly couple a quasilinear Schrödinger equation driven by a weighted <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-Laplace operator and without the mass term, and a higher-order fractional Poisson equation. Since the system is set in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>N</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^N$</annotation>\\n </semantics></math>, the limiting case for the Sobolev embedding, we consider nonlinearities with exponential growth. Existence is proved relying on the study of a corresponding Choquard equation in which the Riesz kernel is a logarithm, hence sign-changing and unbounded from above and below. This is in turn solved by means of a variational approximating procedure for an auxiliary Choquard equation, where the logarithm is uniformly approximated by polynomial kernels. Our results are new even in the planar case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$N=2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类系统的正解存在性,这类系统是由加权拉普拉斯算子驱动的准线性薛定谔方程与高阶分数泊松方程的强耦合,且不含质量项。由于系统设置在索波列夫嵌入的极限情况下,我们考虑了指数增长的非线性问题。通过研究相应的 Choquard 方程,证明了该方程的存在性,在该方程中,Riesz 核是对数,因此从上至下都是符号变化和无约束的。这反过来又可以通过辅助乔夸德方程的变分逼近程序来解决,其中的对数由多项式核均匀逼近。即使在平面情况下,我们的结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Schrödinger–Poisson systems with zero mass in the Sobolev limiting case

We study the existence of positive solutions for a class of systems which strongly couple a quasilinear Schrödinger equation driven by a weighted N $N$ -Laplace operator and without the mass term, and a higher-order fractional Poisson equation. Since the system is set in R N $\mathbb {R}^N$ , the limiting case for the Sobolev embedding, we consider nonlinearities with exponential growth. Existence is proved relying on the study of a corresponding Choquard equation in which the Riesz kernel is a logarithm, hence sign-changing and unbounded from above and below. This is in turn solved by means of a variational approximating procedure for an auxiliary Choquard equation, where the logarithm is uniformly approximated by polynomial kernels. Our results are new even in the planar case N = 2 $N=2$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信