关于带断开各向同性群的张-斯凯尔布雷德积分计算

Leopold Zoller
{"title":"关于带断开各向同性群的张-斯凯尔布雷德积分计算","authors":"Leopold Zoller","doi":"arxiv-2407.03052","DOIUrl":null,"url":null,"abstract":"The Chang-Skjelbred method computes the cohomology of a suitable space with a\ntorus action from its equivariant one-skeleton. We show that, under certain\nrestrictions on the cohomological torsion, the integral cohomology is encoded\nin the one-skeleton even in the presence of arbitrary disconnected isotropy\ngroups. We provide applications to Hamiltonian actions as well as to the GKM\ncase. In the latter, our results lead to a modification of the GKM formula for\ngraph cohomology.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On integral Chang-Skjelbred computations with disconnected isotropy groups\",\"authors\":\"Leopold Zoller\",\"doi\":\"arxiv-2407.03052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Chang-Skjelbred method computes the cohomology of a suitable space with a\\ntorus action from its equivariant one-skeleton. We show that, under certain\\nrestrictions on the cohomological torsion, the integral cohomology is encoded\\nin the one-skeleton even in the presence of arbitrary disconnected isotropy\\ngroups. We provide applications to Hamiltonian actions as well as to the GKM\\ncase. In the latter, our results lead to a modification of the GKM formula for\\ngraph cohomology.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Chang-Skjelbred 方法通过等变单骨架计算具有atorus 作用的合适空间的同调。我们证明,在同调扭转的某些限制条件下,即使存在任意断开的各向同性群,积分同调也会被编码在单骨架中。我们提供了哈密顿作用和 GKM 案例的应用。在后者中,我们的结果导致了对 GKM 公式图同调的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On integral Chang-Skjelbred computations with disconnected isotropy groups
The Chang-Skjelbred method computes the cohomology of a suitable space with a torus action from its equivariant one-skeleton. We show that, under certain restrictions on the cohomological torsion, the integral cohomology is encoded in the one-skeleton even in the presence of arbitrary disconnected isotropy groups. We provide applications to Hamiltonian actions as well as to the GKM case. In the latter, our results lead to a modification of the GKM formula for graph cohomology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信