{"title":"分形正方形拓扑豪斯多夫维数的估计值","authors":"Jian-Ci Xiao","doi":"10.1016/j.topol.2024.109003","DOIUrl":null,"url":null,"abstract":"<div><p>We first obtain some upper bounds on the topological Hausdorff dimensions of fractal squares. As a corollary, we give the formula for this dimension of a special class of fractal squares. Combined with previous results, we also complete the computation of the topological Hausdorff dimensions of fractal squares of order three. Some of these require non-trivial constructions of bases. Our results also shed light on the Lipschitz classification of fractal squares.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"355 ","pages":"Article 109003"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates on the topological Hausdorff dimensions of fractal squares\",\"authors\":\"Jian-Ci Xiao\",\"doi\":\"10.1016/j.topol.2024.109003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We first obtain some upper bounds on the topological Hausdorff dimensions of fractal squares. As a corollary, we give the formula for this dimension of a special class of fractal squares. Combined with previous results, we also complete the computation of the topological Hausdorff dimensions of fractal squares of order three. Some of these require non-trivial constructions of bases. Our results also shed light on the Lipschitz classification of fractal squares.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"355 \",\"pages\":\"Article 109003\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124001883\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124001883","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Estimates on the topological Hausdorff dimensions of fractal squares
We first obtain some upper bounds on the topological Hausdorff dimensions of fractal squares. As a corollary, we give the formula for this dimension of a special class of fractal squares. Combined with previous results, we also complete the computation of the topological Hausdorff dimensions of fractal squares of order three. Some of these require non-trivial constructions of bases. Our results also shed light on the Lipschitz classification of fractal squares.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.