弗赖登塔尔法和其他连续框架压缩法

IF 0.6 4区 数学 Q3 MATHEMATICS
Simo Mthethwa, Gugulethu Nogwebela
{"title":"弗赖登塔尔法和其他连续框架压缩法","authors":"Simo Mthethwa,&nbsp;Gugulethu Nogwebela","doi":"10.1007/s00012-024-00857-5","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>N</i>-star compactifications of frames are the frame-theoretic counterpart of the <i>N</i>-point compactifications of locally compact Hausdorff spaces. A <span>\\(\\pi \\)</span>-compactification of a frame <i>L</i> is a compactification constructed using a special type of a basis called a <span>\\(\\pi \\)</span>-compact basis; the Freudenthal compactification is the largest <span>\\(\\pi \\)</span>-compactification of a rim-compact frame. As one of the main results, we show that the Freudenthal compactification of a regular continuous frame is the least upper bound for the set of all <i>N</i>-star compactifications. A compactification whose right adjoint preserves disjoint binary joins is called perfect. We establish a class of frames for which <i>N</i>-star compactifications are always perfect. For the class of zero-dimensional frames, we construct a compactification which is isomorphic to the Banaschewski compactification and the Freudenthal compactification; in some special case, this compactification is isomorphic to the Stone–Čech compactification.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00857-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The Freudenthal and other compactifications of continuous frames\",\"authors\":\"Simo Mthethwa,&nbsp;Gugulethu Nogwebela\",\"doi\":\"10.1007/s00012-024-00857-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <i>N</i>-star compactifications of frames are the frame-theoretic counterpart of the <i>N</i>-point compactifications of locally compact Hausdorff spaces. A <span>\\\\(\\\\pi \\\\)</span>-compactification of a frame <i>L</i> is a compactification constructed using a special type of a basis called a <span>\\\\(\\\\pi \\\\)</span>-compact basis; the Freudenthal compactification is the largest <span>\\\\(\\\\pi \\\\)</span>-compactification of a rim-compact frame. As one of the main results, we show that the Freudenthal compactification of a regular continuous frame is the least upper bound for the set of all <i>N</i>-star compactifications. A compactification whose right adjoint preserves disjoint binary joins is called perfect. We establish a class of frames for which <i>N</i>-star compactifications are always perfect. For the class of zero-dimensional frames, we construct a compactification which is isomorphic to the Banaschewski compactification and the Freudenthal compactification; in some special case, this compactification is isomorphic to the Stone–Čech compactification.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-024-00857-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00857-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00857-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

框架的 N-star 压缩是局部紧凑 Hausdorff 空间的 N-point 压缩的框架理论对应物。框架 L 的 \(\pi \)-紧凑化是使用一种叫做 \(\pi \)-紧凑化基础的特殊类型的基础构造的紧凑化;弗罗伊登塔尔紧凑化是边缘紧凑框架的最大 \(\pi \)-紧凑化。作为主要结果之一,我们证明了正则连续框的弗赖登塔尔紧凑化是所有 N 星紧凑化集合的最小上界。右邻接保留了不相交的二元连接的紧凑化被称为完美紧凑化。我们建立了一类 N 星压缩总是完美的框架。对于零维框架类,我们构造了一种与巴纳舍夫斯基(Banaschewski)紧凑化和弗赖登塔尔(Freudenthal)紧凑化同构的紧凑化;在某些特殊情况下,这种紧凑化与斯通切赫(Stone-Čech)紧凑化同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Freudenthal and other compactifications of continuous frames

The Freudenthal and other compactifications of continuous frames

The N-star compactifications of frames are the frame-theoretic counterpart of the N-point compactifications of locally compact Hausdorff spaces. A \(\pi \)-compactification of a frame L is a compactification constructed using a special type of a basis called a \(\pi \)-compact basis; the Freudenthal compactification is the largest \(\pi \)-compactification of a rim-compact frame. As one of the main results, we show that the Freudenthal compactification of a regular continuous frame is the least upper bound for the set of all N-star compactifications. A compactification whose right adjoint preserves disjoint binary joins is called perfect. We establish a class of frames for which N-star compactifications are always perfect. For the class of zero-dimensional frames, we construct a compactification which is isomorphic to the Banaschewski compactification and the Freudenthal compactification; in some special case, this compactification is isomorphic to the Stone–Čech compactification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信