{"title":"弗赖登塔尔法和其他连续框架压缩法","authors":"Simo Mthethwa, Gugulethu Nogwebela","doi":"10.1007/s00012-024-00857-5","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>N</i>-star compactifications of frames are the frame-theoretic counterpart of the <i>N</i>-point compactifications of locally compact Hausdorff spaces. A <span>\\(\\pi \\)</span>-compactification of a frame <i>L</i> is a compactification constructed using a special type of a basis called a <span>\\(\\pi \\)</span>-compact basis; the Freudenthal compactification is the largest <span>\\(\\pi \\)</span>-compactification of a rim-compact frame. As one of the main results, we show that the Freudenthal compactification of a regular continuous frame is the least upper bound for the set of all <i>N</i>-star compactifications. A compactification whose right adjoint preserves disjoint binary joins is called perfect. We establish a class of frames for which <i>N</i>-star compactifications are always perfect. For the class of zero-dimensional frames, we construct a compactification which is isomorphic to the Banaschewski compactification and the Freudenthal compactification; in some special case, this compactification is isomorphic to the Stone–Čech compactification.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00857-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The Freudenthal and other compactifications of continuous frames\",\"authors\":\"Simo Mthethwa, Gugulethu Nogwebela\",\"doi\":\"10.1007/s00012-024-00857-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <i>N</i>-star compactifications of frames are the frame-theoretic counterpart of the <i>N</i>-point compactifications of locally compact Hausdorff spaces. A <span>\\\\(\\\\pi \\\\)</span>-compactification of a frame <i>L</i> is a compactification constructed using a special type of a basis called a <span>\\\\(\\\\pi \\\\)</span>-compact basis; the Freudenthal compactification is the largest <span>\\\\(\\\\pi \\\\)</span>-compactification of a rim-compact frame. As one of the main results, we show that the Freudenthal compactification of a regular continuous frame is the least upper bound for the set of all <i>N</i>-star compactifications. A compactification whose right adjoint preserves disjoint binary joins is called perfect. We establish a class of frames for which <i>N</i>-star compactifications are always perfect. For the class of zero-dimensional frames, we construct a compactification which is isomorphic to the Banaschewski compactification and the Freudenthal compactification; in some special case, this compactification is isomorphic to the Stone–Čech compactification.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-024-00857-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00857-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00857-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
框架的 N-star 压缩是局部紧凑 Hausdorff 空间的 N-point 压缩的框架理论对应物。框架 L 的 \(\pi \)-紧凑化是使用一种叫做 \(\pi \)-紧凑化基础的特殊类型的基础构造的紧凑化;弗罗伊登塔尔紧凑化是边缘紧凑框架的最大 \(\pi \)-紧凑化。作为主要结果之一,我们证明了正则连续框的弗赖登塔尔紧凑化是所有 N 星紧凑化集合的最小上界。右邻接保留了不相交的二元连接的紧凑化被称为完美紧凑化。我们建立了一类 N 星压缩总是完美的框架。对于零维框架类,我们构造了一种与巴纳舍夫斯基(Banaschewski)紧凑化和弗赖登塔尔(Freudenthal)紧凑化同构的紧凑化;在某些特殊情况下,这种紧凑化与斯通切赫(Stone-Čech)紧凑化同构。
The Freudenthal and other compactifications of continuous frames
The N-star compactifications of frames are the frame-theoretic counterpart of the N-point compactifications of locally compact Hausdorff spaces. A \(\pi \)-compactification of a frame L is a compactification constructed using a special type of a basis called a \(\pi \)-compact basis; the Freudenthal compactification is the largest \(\pi \)-compactification of a rim-compact frame. As one of the main results, we show that the Freudenthal compactification of a regular continuous frame is the least upper bound for the set of all N-star compactifications. A compactification whose right adjoint preserves disjoint binary joins is called perfect. We establish a class of frames for which N-star compactifications are always perfect. For the class of zero-dimensional frames, we construct a compactification which is isomorphic to the Banaschewski compactification and the Freudenthal compactification; in some special case, this compactification is isomorphic to the Stone–Čech compactification.
期刊介绍:
Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.