Luis Vallejo-Molina, Astrid Blandon-Montes, Sebastian Lopez, Jorge Molina-Escobar, Andres Ortiz, David Soto, Jose Torero, Alejandro Toro, Alejandro Molina
{"title":"人工智能在哥伦比亚地下矿井爆炸预警中的应用","authors":"Luis Vallejo-Molina, Astrid Blandon-Montes, Sebastian Lopez, Jorge Molina-Escobar, Andres Ortiz, David Soto, Jose Torero, Alejandro Toro, Alejandro Molina","doi":"10.1007/s42461-024-01008-z","DOIUrl":null,"url":null,"abstract":"<p>The use of Artificial Intelligence (AI), particularly of Artificial Neural Networks (ANN), in alerting possible scenarios of methane explosions in Colombian underground mines is illustrated by the analysis of an explosion that killed twelve miners. A combination of geological analysis, a detailed characterization of samples of coal dust and scene evidence, and an analysis with physical modeling tools supported the hypothesis of the existence of an initial methane explosion ignited by an unprotected tool that was followed by a coal dust explosion. The fact that one victim had a portable methane detector at the moment of the methane explosion suggested that the ubiquitous use of these systems in Colombian mines could be used to alert regulatory agencies of a possible methane explosion. This fact was illustrated with the generation of a database of possible readouts of methane concentration based on the recreation of the mine atmosphere before the explosion with Computational Fluid Dynamics (CFD). This database was used to train and test an ANN that included an input layer with two nodes, two hidden layers, each with eight nodes, and an output layer with one node. The inner layers applied a rectified linear unit activation function and the output layer a Sigmoid function. The performance of the ANN algorithm was considered acceptable as it correctly predicted the need for an explosion alert in 971.9 per thousand cases and illustrated how AI can process data that is currently discarded but that can be of importance to alert about methane explosions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Artificial Intelligence to the Alert of Explosions in Colombian Underground Mines\",\"authors\":\"Luis Vallejo-Molina, Astrid Blandon-Montes, Sebastian Lopez, Jorge Molina-Escobar, Andres Ortiz, David Soto, Jose Torero, Alejandro Toro, Alejandro Molina\",\"doi\":\"10.1007/s42461-024-01008-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of Artificial Intelligence (AI), particularly of Artificial Neural Networks (ANN), in alerting possible scenarios of methane explosions in Colombian underground mines is illustrated by the analysis of an explosion that killed twelve miners. A combination of geological analysis, a detailed characterization of samples of coal dust and scene evidence, and an analysis with physical modeling tools supported the hypothesis of the existence of an initial methane explosion ignited by an unprotected tool that was followed by a coal dust explosion. The fact that one victim had a portable methane detector at the moment of the methane explosion suggested that the ubiquitous use of these systems in Colombian mines could be used to alert regulatory agencies of a possible methane explosion. This fact was illustrated with the generation of a database of possible readouts of methane concentration based on the recreation of the mine atmosphere before the explosion with Computational Fluid Dynamics (CFD). This database was used to train and test an ANN that included an input layer with two nodes, two hidden layers, each with eight nodes, and an output layer with one node. The inner layers applied a rectified linear unit activation function and the output layer a Sigmoid function. The performance of the ANN algorithm was considered acceptable as it correctly predicted the need for an explosion alert in 971.9 per thousand cases and illustrated how AI can process data that is currently discarded but that can be of importance to alert about methane explosions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01008-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01008-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of Artificial Intelligence to the Alert of Explosions in Colombian Underground Mines
The use of Artificial Intelligence (AI), particularly of Artificial Neural Networks (ANN), in alerting possible scenarios of methane explosions in Colombian underground mines is illustrated by the analysis of an explosion that killed twelve miners. A combination of geological analysis, a detailed characterization of samples of coal dust and scene evidence, and an analysis with physical modeling tools supported the hypothesis of the existence of an initial methane explosion ignited by an unprotected tool that was followed by a coal dust explosion. The fact that one victim had a portable methane detector at the moment of the methane explosion suggested that the ubiquitous use of these systems in Colombian mines could be used to alert regulatory agencies of a possible methane explosion. This fact was illustrated with the generation of a database of possible readouts of methane concentration based on the recreation of the mine atmosphere before the explosion with Computational Fluid Dynamics (CFD). This database was used to train and test an ANN that included an input layer with two nodes, two hidden layers, each with eight nodes, and an output layer with one node. The inner layers applied a rectified linear unit activation function and the output layer a Sigmoid function. The performance of the ANN algorithm was considered acceptable as it correctly predicted the need for an explosion alert in 971.9 per thousand cases and illustrated how AI can process data that is currently discarded but that can be of importance to alert about methane explosions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.