{"title":"图上瓦瑟斯坦空间的汉密尔顿-雅可比方程的好求性","authors":"Wilfrid Gangbo, Chenchen Mou, Andrzej Święch","doi":"10.1007/s00526-024-02758-w","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness for Hamilton–Jacobi equations on the Wasserstein space on graphs\",\"authors\":\"Wilfrid Gangbo, Chenchen Mou, Andrzej Święch\",\"doi\":\"10.1007/s00526-024-02758-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02758-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02758-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Well-posedness for Hamilton–Jacobi equations on the Wasserstein space on graphs
In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.