图上瓦瑟斯坦空间的汉密尔顿-雅可比方程的好求性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wilfrid Gangbo, Chenchen Mou, Andrzej Święch
{"title":"图上瓦瑟斯坦空间的汉密尔顿-雅可比方程的好求性","authors":"Wilfrid Gangbo, Chenchen Mou, Andrzej Święch","doi":"10.1007/s00526-024-02758-w","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness for Hamilton–Jacobi equations on the Wasserstein space on graphs\",\"authors\":\"Wilfrid Gangbo, Chenchen Mou, Andrzej Święch\",\"doi\":\"10.1007/s00526-024-02758-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02758-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02758-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本手稿中,我们给定了概率单纯形上的度量张量,定义了图上概率度量的瓦瑟斯坦空间上的微分算子。这样,我们就能提出图个体噪声算子的概念,并研究这个瓦瑟斯坦空间上的汉密尔顿-雅可比方程。我们证明了此类汉密尔顿-雅可比方程粘度解的比较原则,并用佩伦方法证明了粘度解的存在性。我们还讨论了一个模型最优控制问题,并证明值函数是相关汉密尔顿-雅可比-贝尔曼方程的唯一粘性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness for Hamilton–Jacobi equations on the Wasserstein space on graphs

In this manuscript, given a metric tensor on the probability simplex, we define differential operators on the Wasserstein space of probability measures on a graph. This allows us to propose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations on this Wasserstein space. We prove comparison principles for viscosity solutions of such Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method. We also discuss a model optimal control problem and show that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信