{"title":"负曲率黎曼流形上的一类全非线性方程","authors":"Li Chen, Yan He","doi":"10.1007/s00526-024-02756-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of fully nonlinear equations on Riemannian manifolds with negative curvature which naturally arise in conformal geometry. Moreover, we prove the a priori estimates for solutions to these equations and establish the existence results. Our results can be viewed as an extension of previous results given by Gursky–Viaclovsky and Li–Sheng.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of fully nonlinear equations on Riemannian manifolds with negative curvature\",\"authors\":\"Li Chen, Yan He\",\"doi\":\"10.1007/s00526-024-02756-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a class of fully nonlinear equations on Riemannian manifolds with negative curvature which naturally arise in conformal geometry. Moreover, we prove the a priori estimates for solutions to these equations and establish the existence results. Our results can be viewed as an extension of previous results given by Gursky–Viaclovsky and Li–Sheng.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02756-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02756-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A class of fully nonlinear equations on Riemannian manifolds with negative curvature
In this paper, we consider a class of fully nonlinear equations on Riemannian manifolds with negative curvature which naturally arise in conformal geometry. Moreover, we prove the a priori estimates for solutions to these equations and establish the existence results. Our results can be viewed as an extension of previous results given by Gursky–Viaclovsky and Li–Sheng.