负曲率黎曼流形上的一类全非线性方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Li Chen, Yan He
{"title":"负曲率黎曼流形上的一类全非线性方程","authors":"Li Chen, Yan He","doi":"10.1007/s00526-024-02756-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of fully nonlinear equations on Riemannian manifolds with negative curvature which naturally arise in conformal geometry. Moreover, we prove the a priori estimates for solutions to these equations and establish the existence results. Our results can be viewed as an extension of previous results given by Gursky–Viaclovsky and Li–Sheng.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of fully nonlinear equations on Riemannian manifolds with negative curvature\",\"authors\":\"Li Chen, Yan He\",\"doi\":\"10.1007/s00526-024-02756-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a class of fully nonlinear equations on Riemannian manifolds with negative curvature which naturally arise in conformal geometry. Moreover, we prove the a priori estimates for solutions to these equations and establish the existence results. Our results can be viewed as an extension of previous results given by Gursky–Viaclovsky and Li–Sheng.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02756-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02756-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一类负曲率黎曼流形上的全非线性方程,这些方程自然出现在共形几何中。此外,我们还证明了这些方程解的先验估计,并建立了存在性结果。我们的结果可以看作是 Gursky-Viaclovsky 和李胜之前结果的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of fully nonlinear equations on Riemannian manifolds with negative curvature

In this paper, we consider a class of fully nonlinear equations on Riemannian manifolds with negative curvature which naturally arise in conformal geometry. Moreover, we prove the a priori estimates for solutions to these equations and establish the existence results. Our results can be viewed as an extension of previous results given by Gursky–Viaclovsky and Li–Sheng.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信