具有非常退化势能的非线性薛定谔方程集中解的莫尔斯指数

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peng Luo, Kefan Pan, Shuangjie Peng
{"title":"具有非常退化势能的非线性薛定谔方程集中解的莫尔斯指数","authors":"Peng Luo, Kefan Pan, Shuangjie Peng","doi":"10.1007/s00526-024-02766-w","DOIUrl":null,"url":null,"abstract":"<p>We revisit the following nonlinear Schrödinger equation </p><span>$$\\begin{aligned} -\\varepsilon ^2\\Delta u+ V(x)u=u^{p},\\quad u&gt;0,\\;\\; u\\in H^1({\\mathbb {R}}^N), \\end{aligned}$$</span><p>where <span>\\(\\varepsilon &gt;0\\)</span> is a small parameter, <span>\\(N\\ge 2\\)</span> and <span>\\(1&lt;p&lt;2^*-1\\)</span>. It is known that the Morse index gives a strong qualitative information on the solutions, such as non-degeneracy, uniqueness, symmetries, singularities as well as classifying solutions. Here we compute the Morse index of positive <i>k</i>-peak solutions to above problem when the critical points of <i>V</i>(<i>x</i>) are non-isolated and degenerate. We also give a specific formula for the Morse index of <i>k</i>-peak solutions when the critical point set of <i>V</i>(<i>x</i>) is a low-dimensional ellipsoid. Our main difficulty comes from the non-uniform degeneracy of potential <i>V</i>(<i>x</i>). Our results generalize Grossi and Servadei’s work (Ann Math Pura Appl 186: 433–453, (2007)) to very degenerate (non-admissible) potentials and show that the structure of potentials highly affects the properties of concentrated solutions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morse index of concentrated solutions for the nonlinear Schrödinger equation with a very degenerate potential\",\"authors\":\"Peng Luo, Kefan Pan, Shuangjie Peng\",\"doi\":\"10.1007/s00526-024-02766-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit the following nonlinear Schrödinger equation </p><span>$$\\\\begin{aligned} -\\\\varepsilon ^2\\\\Delta u+ V(x)u=u^{p},\\\\quad u&gt;0,\\\\;\\\\; u\\\\in H^1({\\\\mathbb {R}}^N), \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\varepsilon &gt;0\\\\)</span> is a small parameter, <span>\\\\(N\\\\ge 2\\\\)</span> and <span>\\\\(1&lt;p&lt;2^*-1\\\\)</span>. It is known that the Morse index gives a strong qualitative information on the solutions, such as non-degeneracy, uniqueness, symmetries, singularities as well as classifying solutions. Here we compute the Morse index of positive <i>k</i>-peak solutions to above problem when the critical points of <i>V</i>(<i>x</i>) are non-isolated and degenerate. We also give a specific formula for the Morse index of <i>k</i>-peak solutions when the critical point set of <i>V</i>(<i>x</i>) is a low-dimensional ellipsoid. Our main difficulty comes from the non-uniform degeneracy of potential <i>V</i>(<i>x</i>). Our results generalize Grossi and Servadei’s work (Ann Math Pura Appl 186: 433–453, (2007)) to very degenerate (non-admissible) potentials and show that the structure of potentials highly affects the properties of concentrated solutions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02766-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02766-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们重温下面的非线性薛定谔方程 $$begin{aligned} -\varepsilon ^2\Delta u+ V(x)u=u^{p},\quad u>0,\;\; u\in H^1({\mathbb {R}}^N), \end{aligned}$ 其中 \(\varepsilon >0\) 是一个小参数, \(N\ge 2\) 和 \(1<p<2^*-1\).众所周知,莫尔斯指数给出了解的强有力的定性信息,如非退化性、唯一性、对称性、奇异性以及解的分类。在此,我们将计算当 V(x) 的临界点为非孤立且退化时,上述问题的正 k 峰解的莫尔斯指数。我们还给出了当 V(x) 的临界点集是低维椭圆时 k 峰解的莫尔斯指数的具体公式。我们的主要困难来自势 V(x) 的非均匀退化性。我们的结果将 Grossi 和 Servadei 的研究成果(Ann Math Pura Appl 186: 433-453, (2007))推广到了非常退化(非容许)的势上,并表明势的结构对集中解的性质有很大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morse index of concentrated solutions for the nonlinear Schrödinger equation with a very degenerate potential

We revisit the following nonlinear Schrödinger equation

$$\begin{aligned} -\varepsilon ^2\Delta u+ V(x)u=u^{p},\quad u>0,\;\; u\in H^1({\mathbb {R}}^N), \end{aligned}$$

where \(\varepsilon >0\) is a small parameter, \(N\ge 2\) and \(1<p<2^*-1\). It is known that the Morse index gives a strong qualitative information on the solutions, such as non-degeneracy, uniqueness, symmetries, singularities as well as classifying solutions. Here we compute the Morse index of positive k-peak solutions to above problem when the critical points of V(x) are non-isolated and degenerate. We also give a specific formula for the Morse index of k-peak solutions when the critical point set of V(x) is a low-dimensional ellipsoid. Our main difficulty comes from the non-uniform degeneracy of potential V(x). Our results generalize Grossi and Servadei’s work (Ann Math Pura Appl 186: 433–453, (2007)) to very degenerate (non-admissible) potentials and show that the structure of potentials highly affects the properties of concentrated solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信