关于具有短脉冲初始数据的三维准线性波方程 $$-\big (1+(\partial _t\phi )^p\big )\partial _t^2\phi +\Delta \phi =0$$ 的临界指数 $$p_c$$:II-shock formation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lu Yu, Yin Huicheng
{"title":"关于具有短脉冲初始数据的三维准线性波方程 $$-\\big (1+(\\partial _t\\phi )^p\\big )\\partial _t^2\\phi +\\Delta \\phi =0$$ 的临界指数 $$p_c$$:II-shock formation","authors":"Lu Yu, Yin Huicheng","doi":"10.1007/s00526-024-02753-1","DOIUrl":null,"url":null,"abstract":"<p>In the previous paper (Ding et al. in J Differ Equ 385:183–253, 2024), for the 3D quasilinear wave equation <span>\\(-\\big (1+(\\partial _t\\phi )^p\\big )\\partial _t^2\\phi +\\Delta \\phi =0\\)</span> with short pulse initial data <span>\\((\\phi ,\\partial _t\\phi )(1,x)=\\big (\\delta ^{2-\\varepsilon _{0}}\\phi _0 (\\frac{r-1}{\\delta },\\omega ),\\delta ^{1-\\varepsilon _{0}}\\phi _1(\\frac{r-1}{\\delta },\\omega )\\big )\\)</span>, where <span>\\(p\\in \\mathbb {N}\\)</span>, <span>\\(0&lt;\\varepsilon _{0}&lt;1\\)</span>, under the outgoing constraint condition <span>\\((\\partial _t+\\partial _r)^k\\phi (1,x)=O(\\delta ^{2-\\varepsilon _{0}-k\\max \\{0,1-(1-\\varepsilon _{0})p\\}})\\)</span> for <span>\\(k=1,2\\)</span>, the authors establish the global existence of smooth large solution <span>\\(\\phi \\)</span> when <span>\\(p&gt;p_c\\)</span> with <span>\\(p_c=\\frac{1}{1-\\varepsilon _{0}}\\)</span>. In the present paper, under the same outgoing constraint condition, when <span>\\(1\\le p\\le p_c\\)</span>, we will show that the smooth solution <span>\\(\\phi \\)</span> may blow up and further the outgoing shock is formed in finite time.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the critical exponent $$p_c$$ of the 3D quasilinear wave equation $$-\\\\big (1+(\\\\partial _t\\\\phi )^p\\\\big )\\\\partial _t^2\\\\phi +\\\\Delta \\\\phi =0$$ with short pulse initial data: II—shock formation\",\"authors\":\"Lu Yu, Yin Huicheng\",\"doi\":\"10.1007/s00526-024-02753-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the previous paper (Ding et al. in J Differ Equ 385:183–253, 2024), for the 3D quasilinear wave equation <span>\\\\(-\\\\big (1+(\\\\partial _t\\\\phi )^p\\\\big )\\\\partial _t^2\\\\phi +\\\\Delta \\\\phi =0\\\\)</span> with short pulse initial data <span>\\\\((\\\\phi ,\\\\partial _t\\\\phi )(1,x)=\\\\big (\\\\delta ^{2-\\\\varepsilon _{0}}\\\\phi _0 (\\\\frac{r-1}{\\\\delta },\\\\omega ),\\\\delta ^{1-\\\\varepsilon _{0}}\\\\phi _1(\\\\frac{r-1}{\\\\delta },\\\\omega )\\\\big )\\\\)</span>, where <span>\\\\(p\\\\in \\\\mathbb {N}\\\\)</span>, <span>\\\\(0&lt;\\\\varepsilon _{0}&lt;1\\\\)</span>, under the outgoing constraint condition <span>\\\\((\\\\partial _t+\\\\partial _r)^k\\\\phi (1,x)=O(\\\\delta ^{2-\\\\varepsilon _{0}-k\\\\max \\\\{0,1-(1-\\\\varepsilon _{0})p\\\\}})\\\\)</span> for <span>\\\\(k=1,2\\\\)</span>, the authors establish the global existence of smooth large solution <span>\\\\(\\\\phi \\\\)</span> when <span>\\\\(p&gt;p_c\\\\)</span> with <span>\\\\(p_c=\\\\frac{1}{1-\\\\varepsilon _{0}}\\\\)</span>. In the present paper, under the same outgoing constraint condition, when <span>\\\\(1\\\\le p\\\\le p_c\\\\)</span>, we will show that the smooth solution <span>\\\\(\\\\phi \\\\)</span> may blow up and further the outgoing shock is formed in finite time.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02753-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02753-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在上一篇论文(Ding et al.in J Differ Equ 385:183-253, 2024),对于具有短脉冲初始数据的三维准线性波方程 \(-\big (1+(\partial _t\phi )^p\big )\partial _t^2\phi +\Delta \phi =0\) (((\phi ,\partial _t\phi )(1、x)=\big (\delta ^{2-\varepsilon _{0}}\phi _0 (\frac{r-1}{\delta },\omega ),\delta ^{1-\varepsilon _{0}}\phi _1(\frac{r-1}{\delta },\omega )\big )\), where\(p\in \mathbb {N}\),\(0<;\varepsilon _{0}<;1), under the outgoing constraint condition \((\partial _t+\partial _r)^k\phi (1,x)=O(\delta ^{2-\varepsilon _{0}-k\max \{0,1-(1-\varepsilon _{0})p}})\) for\(k=1,2\), the authors establish the global existence of smooth large solution \(\phi \) when \(p>;p_c\) with \(p_c=\frac{1}{1-\varepsilon _{0}}\).在本文中,在相同的流出约束条件下,当 \(1\le p\le p_c\) 时,我们将证明平稳解 \(\phi \) 可能会破裂,并在有限的时间内进一步形成流出冲击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the critical exponent $$p_c$$ of the 3D quasilinear wave equation $$-\big (1+(\partial _t\phi )^p\big )\partial _t^2\phi +\Delta \phi =0$$ with short pulse initial data: II—shock formation

In the previous paper (Ding et al. in J Differ Equ 385:183–253, 2024), for the 3D quasilinear wave equation \(-\big (1+(\partial _t\phi )^p\big )\partial _t^2\phi +\Delta \phi =0\) with short pulse initial data \((\phi ,\partial _t\phi )(1,x)=\big (\delta ^{2-\varepsilon _{0}}\phi _0 (\frac{r-1}{\delta },\omega ),\delta ^{1-\varepsilon _{0}}\phi _1(\frac{r-1}{\delta },\omega )\big )\), where \(p\in \mathbb {N}\), \(0<\varepsilon _{0}<1\), under the outgoing constraint condition \((\partial _t+\partial _r)^k\phi (1,x)=O(\delta ^{2-\varepsilon _{0}-k\max \{0,1-(1-\varepsilon _{0})p\}})\) for \(k=1,2\), the authors establish the global existence of smooth large solution \(\phi \) when \(p>p_c\) with \(p_c=\frac{1}{1-\varepsilon _{0}}\). In the present paper, under the same outgoing constraint condition, when \(1\le p\le p_c\), we will show that the smooth solution \(\phi \) may blow up and further the outgoing shock is formed in finite time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信