局部尤多维奇空间中欧拉流的存在性和唯一性的基本证明

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gianluca Crippa, Giorgio Stefani
{"title":"局部尤多维奇空间中欧拉流的存在性和唯一性的基本证明","authors":"Gianluca Crippa, Giorgio Stefani","doi":"10.1007/s00526-024-02750-4","DOIUrl":null,"url":null,"abstract":"<p>We revisit Yudovich’s well-posedness result for the 2-dimensional Euler equations for an inviscid incompressible fluid on either a sufficiently regular (not necessarily bounded) open set <span>\\(\\Omega \\subset \\mathbb {R}^2\\)</span> or on the torus <span>\\(\\Omega =\\mathbb {T}^2\\)</span>. We construct global-in-time weak solutions with vorticity in <span>\\(L^1\\cap L^p_{ul}\\)</span> and in <span>\\(L^1\\cap Y^\\Theta _{ul}\\)</span>, where <span>\\(L^p_{ul}\\)</span> and <span>\\(Y^\\Theta _{ul}\\)</span> are suitable uniformly-localized versions of the Lebesgue space <span>\\(L^p\\)</span> and of the Yudovich space <span>\\(Y^\\Theta \\)</span> respectively, with no condition at infinity for the growth function <span>\\(\\Theta \\)</span>. We also provide an explicit modulus of continuity for the velocity depending on the growth function <span>\\(\\Theta \\)</span>. We prove uniqueness of weak solutions in <span>\\(L^1\\cap Y^\\Theta _{ul}\\)</span> under the assumption that <span>\\(\\Theta \\)</span> grows moderately at infinity. In contrast to Yudovich’s energy method, we employ a Lagrangian strategy to show uniqueness. Our entire argument relies on elementary real-variable techniques, with no use of either Sobolev spaces, Calderón–Zygmund theory or Littlewood–Paley decomposition, and actually applies not only to the Biot–Savart law, but also to more general operators whose kernels obey some natural structural assumptions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An elementary proof of existence and uniqueness for the Euler flow in localized Yudovich spaces\",\"authors\":\"Gianluca Crippa, Giorgio Stefani\",\"doi\":\"10.1007/s00526-024-02750-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit Yudovich’s well-posedness result for the 2-dimensional Euler equations for an inviscid incompressible fluid on either a sufficiently regular (not necessarily bounded) open set <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^2\\\\)</span> or on the torus <span>\\\\(\\\\Omega =\\\\mathbb {T}^2\\\\)</span>. We construct global-in-time weak solutions with vorticity in <span>\\\\(L^1\\\\cap L^p_{ul}\\\\)</span> and in <span>\\\\(L^1\\\\cap Y^\\\\Theta _{ul}\\\\)</span>, where <span>\\\\(L^p_{ul}\\\\)</span> and <span>\\\\(Y^\\\\Theta _{ul}\\\\)</span> are suitable uniformly-localized versions of the Lebesgue space <span>\\\\(L^p\\\\)</span> and of the Yudovich space <span>\\\\(Y^\\\\Theta \\\\)</span> respectively, with no condition at infinity for the growth function <span>\\\\(\\\\Theta \\\\)</span>. We also provide an explicit modulus of continuity for the velocity depending on the growth function <span>\\\\(\\\\Theta \\\\)</span>. We prove uniqueness of weak solutions in <span>\\\\(L^1\\\\cap Y^\\\\Theta _{ul}\\\\)</span> under the assumption that <span>\\\\(\\\\Theta \\\\)</span> grows moderately at infinity. In contrast to Yudovich’s energy method, we employ a Lagrangian strategy to show uniqueness. Our entire argument relies on elementary real-variable techniques, with no use of either Sobolev spaces, Calderón–Zygmund theory or Littlewood–Paley decomposition, and actually applies not only to the Biot–Savart law, but also to more general operators whose kernels obey some natural structural assumptions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02750-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02750-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们重温了尤多维奇关于二维不粘性不可压缩流体欧拉方程在足够规则(不一定有界)的开放集(\Omega \subset \mathbb {R}^2\)或环面(\Omega =\mathbb {T}^2\)上的良好求解结果。我们在\(L^1\cap L^p_{ul}\)和\(L^1\cap Y^\Theta_{ul}\)中构造了具有涡度的全局时间弱解、其中,\(L^p_{ul}\)和\(Y^\Theta _{ul}\)分别是Lebesgue空间\(L^p\)和Yudovich空间\(Y^\Theta \)的合适的均匀局部版本,增长函数\(\Theta \)在无穷大时没有条件。我们还为速度的连续性提供了一个取决于增长函数 \(\Theta \)的显式模量。我们证明了在\(\Theta \)在无穷处适度增长的假设下,\(L^1\cap Y^\Theta _{ul}\)中弱解的唯一性。与尤多维奇的能量法不同,我们采用拉格朗日策略来证明唯一性。我们的整个论证依赖于基本实变技术,既没有使用索波列夫空间,也没有使用卡尔德龙-齐格蒙理论或利特尔伍德-帕利分解,而且实际上不仅适用于毕奥特-萨瓦特定律,也适用于其核服从一些自然结构假设的更一般的算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An elementary proof of existence and uniqueness for the Euler flow in localized Yudovich spaces

We revisit Yudovich’s well-posedness result for the 2-dimensional Euler equations for an inviscid incompressible fluid on either a sufficiently regular (not necessarily bounded) open set \(\Omega \subset \mathbb {R}^2\) or on the torus \(\Omega =\mathbb {T}^2\). We construct global-in-time weak solutions with vorticity in \(L^1\cap L^p_{ul}\) and in \(L^1\cap Y^\Theta _{ul}\), where \(L^p_{ul}\) and \(Y^\Theta _{ul}\) are suitable uniformly-localized versions of the Lebesgue space \(L^p\) and of the Yudovich space \(Y^\Theta \) respectively, with no condition at infinity for the growth function \(\Theta \). We also provide an explicit modulus of continuity for the velocity depending on the growth function \(\Theta \). We prove uniqueness of weak solutions in \(L^1\cap Y^\Theta _{ul}\) under the assumption that \(\Theta \) grows moderately at infinity. In contrast to Yudovich’s energy method, we employ a Lagrangian strategy to show uniqueness. Our entire argument relies on elementary real-variable techniques, with no use of either Sobolev spaces, Calderón–Zygmund theory or Littlewood–Paley decomposition, and actually applies not only to the Biot–Savart law, but also to more general operators whose kernels obey some natural structural assumptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信