{"title":"具有非局部压力的可压缩欧拉系统:全局存在与松弛","authors":"Raphael Danchin, Piotr Bogusław Mucha","doi":"10.1007/s00526-024-02774-w","DOIUrl":null,"url":null,"abstract":"<p>We here investigate a modification of the compressible barotropic Euler system with friction, involving a fuzzy nonlocal pressure term in place of the conventional one. This nonlocal term is parameterized by <span>\\(\\varepsilon > 0\\)</span> and formally tends to the classical pressure when <span>\\(\\varepsilon \\)</span> approaches zero. The central challenge is to establish that this system is a reliable approximation of the classical compressible Euler system. We establish the global existence and uniqueness of regular solutions in the neighborhood of the static state with density 1 and null velocity. Our results are demonstrated independently of the parameter <span>\\(\\varepsilon ,\\)</span> which enable us to prove the convergence of solutions to those of the classical Euler system. Another consequence is the rigorous justification of the convergence of the mass equation to various versions of the porous media equation in the asymptotic limit where the friction tends to infinity. Note that our results are demonstrated in the whole space, which necessitates to use the <span>\\(L^1(\\mathbb {R}_+; \\dot{B}^\\sigma _{2,1}(\\mathbb {R}^d))\\)</span> spaces framework.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"15 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The compressible Euler system with nonlocal pressure: global existence and relaxation\",\"authors\":\"Raphael Danchin, Piotr Bogusław Mucha\",\"doi\":\"10.1007/s00526-024-02774-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We here investigate a modification of the compressible barotropic Euler system with friction, involving a fuzzy nonlocal pressure term in place of the conventional one. This nonlocal term is parameterized by <span>\\\\(\\\\varepsilon > 0\\\\)</span> and formally tends to the classical pressure when <span>\\\\(\\\\varepsilon \\\\)</span> approaches zero. The central challenge is to establish that this system is a reliable approximation of the classical compressible Euler system. We establish the global existence and uniqueness of regular solutions in the neighborhood of the static state with density 1 and null velocity. Our results are demonstrated independently of the parameter <span>\\\\(\\\\varepsilon ,\\\\)</span> which enable us to prove the convergence of solutions to those of the classical Euler system. Another consequence is the rigorous justification of the convergence of the mass equation to various versions of the porous media equation in the asymptotic limit where the friction tends to infinity. Note that our results are demonstrated in the whole space, which necessitates to use the <span>\\\\(L^1(\\\\mathbb {R}_+; \\\\dot{B}^\\\\sigma _{2,1}(\\\\mathbb {R}^d))\\\\)</span> spaces framework.</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02774-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02774-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The compressible Euler system with nonlocal pressure: global existence and relaxation
We here investigate a modification of the compressible barotropic Euler system with friction, involving a fuzzy nonlocal pressure term in place of the conventional one. This nonlocal term is parameterized by \(\varepsilon > 0\) and formally tends to the classical pressure when \(\varepsilon \) approaches zero. The central challenge is to establish that this system is a reliable approximation of the classical compressible Euler system. We establish the global existence and uniqueness of regular solutions in the neighborhood of the static state with density 1 and null velocity. Our results are demonstrated independently of the parameter \(\varepsilon ,\) which enable us to prove the convergence of solutions to those of the classical Euler system. Another consequence is the rigorous justification of the convergence of the mass equation to various versions of the porous media equation in the asymptotic limit where the friction tends to infinity. Note that our results are demonstrated in the whole space, which necessitates to use the \(L^1(\mathbb {R}_+; \dot{B}^\sigma _{2,1}(\mathbb {R}^d))\) spaces framework.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.