{"title":"用稻草合成的铝硅酸钠萃取 Pb2+ 离子","authors":"A. N. Kholomeydik, A. E. Panasenko","doi":"10.1134/s0036023623603112","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Samples of sodium aluminosilicates obtained by hydrolytic precipitation using rice straw of various types as silicon-containing feedstock were studied. The particle morphology was determined by scanning electron microscopy, the specific surface area was measured (362–470 m<sup>2</sup>/g), IR spectra were recorded, and the chemical and phase composition of the samples was determined. The sorption properties of the materials towards lead ions were studied, the sorption capacity was 199–550 mg/g. An organic component of the samples, formed simultaneously with aluminosilicate precipitation from rice straw hydrolysates, was detected, isolated, and studied by thermogravimetry and IR spectroscopy. The effect of the organic component on the sorption capacity of plant-derived aluminosilicates was investigated. The predominant sorption mechanisms were established. The used approach makes it possible to obtain aluminosilicates with a high sorption capacity, as well as safely dispose of rice straw.</p>","PeriodicalId":762,"journal":{"name":"Russian Journal of Inorganic Chemistry","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of Pb2+ Ions by Sodium Aluminosilicates Synthesized from Rice Straw\",\"authors\":\"A. N. Kholomeydik, A. E. Panasenko\",\"doi\":\"10.1134/s0036023623603112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Samples of sodium aluminosilicates obtained by hydrolytic precipitation using rice straw of various types as silicon-containing feedstock were studied. The particle morphology was determined by scanning electron microscopy, the specific surface area was measured (362–470 m<sup>2</sup>/g), IR spectra were recorded, and the chemical and phase composition of the samples was determined. The sorption properties of the materials towards lead ions were studied, the sorption capacity was 199–550 mg/g. An organic component of the samples, formed simultaneously with aluminosilicate precipitation from rice straw hydrolysates, was detected, isolated, and studied by thermogravimetry and IR spectroscopy. The effect of the organic component on the sorption capacity of plant-derived aluminosilicates was investigated. The predominant sorption mechanisms were established. The used approach makes it possible to obtain aluminosilicates with a high sorption capacity, as well as safely dispose of rice straw.</p>\",\"PeriodicalId\":762,\"journal\":{\"name\":\"Russian Journal of Inorganic Chemistry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s0036023623603112\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0036023623603112","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Extraction of Pb2+ Ions by Sodium Aluminosilicates Synthesized from Rice Straw
Abstract
Samples of sodium aluminosilicates obtained by hydrolytic precipitation using rice straw of various types as silicon-containing feedstock were studied. The particle morphology was determined by scanning electron microscopy, the specific surface area was measured (362–470 m2/g), IR spectra were recorded, and the chemical and phase composition of the samples was determined. The sorption properties of the materials towards lead ions were studied, the sorption capacity was 199–550 mg/g. An organic component of the samples, formed simultaneously with aluminosilicate precipitation from rice straw hydrolysates, was detected, isolated, and studied by thermogravimetry and IR spectroscopy. The effect of the organic component on the sorption capacity of plant-derived aluminosilicates was investigated. The predominant sorption mechanisms were established. The used approach makes it possible to obtain aluminosilicates with a high sorption capacity, as well as safely dispose of rice straw.
期刊介绍:
Russian Journal of Inorganic Chemistry is a monthly periodical that covers the following topics of research: the synthesis and properties of inorganic compounds, coordination compounds, physicochemical analysis of inorganic systems, theoretical inorganic chemistry, physical methods of investigation, chemistry of solutions, inorganic materials, and nanomaterials.