{"title":"通过模块化学习规则","authors":"Albert Nössig, Tobias Hell, Georg Moser","doi":"10.1007/s10994-024-06556-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a modular methodology that combines state-of-the-art methods in (stochastic) machine learning with well-established methods in inductive logic programming (ILP) and rule induction to provide efficient and scalable algorithms for the classification of vast data sets. By construction, these classifications are based on the synthesis of simple rules, thus providing direct explanations of the obtained classifications. Apart from evaluating our approach on the common large scale data sets <i>MNIST</i>, <i>Fashion-MNIST</i> and <i>IMDB</i>, we present novel results on explainable classifications of dental bills. The latter case study stems from an industrial collaboration with <i>Allianz Private Krankenversicherung</i> which is an insurance company offering diverse services in Germany.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"50 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rule learning by modularity\",\"authors\":\"Albert Nössig, Tobias Hell, Georg Moser\",\"doi\":\"10.1007/s10994-024-06556-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a modular methodology that combines state-of-the-art methods in (stochastic) machine learning with well-established methods in inductive logic programming (ILP) and rule induction to provide efficient and scalable algorithms for the classification of vast data sets. By construction, these classifications are based on the synthesis of simple rules, thus providing direct explanations of the obtained classifications. Apart from evaluating our approach on the common large scale data sets <i>MNIST</i>, <i>Fashion-MNIST</i> and <i>IMDB</i>, we present novel results on explainable classifications of dental bills. The latter case study stems from an industrial collaboration with <i>Allianz Private Krankenversicherung</i> which is an insurance company offering diverse services in Germany.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06556-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06556-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
In this paper, we present a modular methodology that combines state-of-the-art methods in (stochastic) machine learning with well-established methods in inductive logic programming (ILP) and rule induction to provide efficient and scalable algorithms for the classification of vast data sets. By construction, these classifications are based on the synthesis of simple rules, thus providing direct explanations of the obtained classifications. Apart from evaluating our approach on the common large scale data sets MNIST, Fashion-MNIST and IMDB, we present novel results on explainable classifications of dental bills. The latter case study stems from an industrial collaboration with Allianz Private Krankenversicherung which is an insurance company offering diverse services in Germany.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.