Linwei He, Jerome Tan, Shi Yan Ng, King Ho Holden Li, Jongyoon Han, Sing Yian Chew, Han Wei Hou
{"title":"对诱导多能干细胞衍生的脊髓祖细胞进行无标签阻抗分析,以快速进行安全性和有效性分析","authors":"Linwei He, Jerome Tan, Shi Yan Ng, King Ho Holden Li, Jongyoon Han, Sing Yian Chew, Han Wei Hou","doi":"10.1002/admt.202400589","DOIUrl":null,"url":null,"abstract":"<p>Regenerative therapies, including the transplantation of spinal cord progenitor cells (SCPCs) derived from induced pluripotent stem cells (iPSCs), are promising treatment strategies for spinal cord injuries. However, the risk of tumorigenicity from residual iPSCs advocates an unmet need for rapid SCPCs safety profiling. Herein, a rapid (≈3000 cells min<sup>-1</sup>) electrical-based microfluidic biophysical cytometer is reported to detect low-abundance iPSCs from SCPCs at single-cell resolution. Based on multifrequency impedance measurements (0.3 to 12 MHz), biophysical features including cell size, deformability, membrane, and nucleus dielectric properties are simultaneously quantified as a cell is hydrodynamically stretched at a cross junction under continuous flow. A supervised uniform manifold approximation and projection (UMAP) model is further developed for impedance-based quantification of undifferentiated iPSCs with high sensitivity (≈1% spiked iPSCs) and shows good correlations with SCPCs differentiation outcomes using two iPSC lines. Cell membrane opacity (day 1) is also identified as a novel early intrinsic predictive biomarker that exhibits a strong correlation with SCPC differentiation efficiency (day 10). Overall, it is envisioned that this label-free and optic-free platform technology can be further developed as a versatile cost-effective process analytical tool to monitor or assess stem cell quality and safety in regenerative medicine. </p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-Free Impedance Analysis of Induced Pluripotent Stem Cell-Derived Spinal Cord Progenitor Cells for Rapid Safety and Efficacy Profiling\",\"authors\":\"Linwei He, Jerome Tan, Shi Yan Ng, King Ho Holden Li, Jongyoon Han, Sing Yian Chew, Han Wei Hou\",\"doi\":\"10.1002/admt.202400589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regenerative therapies, including the transplantation of spinal cord progenitor cells (SCPCs) derived from induced pluripotent stem cells (iPSCs), are promising treatment strategies for spinal cord injuries. However, the risk of tumorigenicity from residual iPSCs advocates an unmet need for rapid SCPCs safety profiling. Herein, a rapid (≈3000 cells min<sup>-1</sup>) electrical-based microfluidic biophysical cytometer is reported to detect low-abundance iPSCs from SCPCs at single-cell resolution. Based on multifrequency impedance measurements (0.3 to 12 MHz), biophysical features including cell size, deformability, membrane, and nucleus dielectric properties are simultaneously quantified as a cell is hydrodynamically stretched at a cross junction under continuous flow. A supervised uniform manifold approximation and projection (UMAP) model is further developed for impedance-based quantification of undifferentiated iPSCs with high sensitivity (≈1% spiked iPSCs) and shows good correlations with SCPCs differentiation outcomes using two iPSC lines. Cell membrane opacity (day 1) is also identified as a novel early intrinsic predictive biomarker that exhibits a strong correlation with SCPC differentiation efficiency (day 10). Overall, it is envisioned that this label-free and optic-free platform technology can be further developed as a versatile cost-effective process analytical tool to monitor or assess stem cell quality and safety in regenerative medicine. </p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"9 20\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400589\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400589","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Label-Free Impedance Analysis of Induced Pluripotent Stem Cell-Derived Spinal Cord Progenitor Cells for Rapid Safety and Efficacy Profiling
Regenerative therapies, including the transplantation of spinal cord progenitor cells (SCPCs) derived from induced pluripotent stem cells (iPSCs), are promising treatment strategies for spinal cord injuries. However, the risk of tumorigenicity from residual iPSCs advocates an unmet need for rapid SCPCs safety profiling. Herein, a rapid (≈3000 cells min-1) electrical-based microfluidic biophysical cytometer is reported to detect low-abundance iPSCs from SCPCs at single-cell resolution. Based on multifrequency impedance measurements (0.3 to 12 MHz), biophysical features including cell size, deformability, membrane, and nucleus dielectric properties are simultaneously quantified as a cell is hydrodynamically stretched at a cross junction under continuous flow. A supervised uniform manifold approximation and projection (UMAP) model is further developed for impedance-based quantification of undifferentiated iPSCs with high sensitivity (≈1% spiked iPSCs) and shows good correlations with SCPCs differentiation outcomes using two iPSC lines. Cell membrane opacity (day 1) is also identified as a novel early intrinsic predictive biomarker that exhibits a strong correlation with SCPC differentiation efficiency (day 10). Overall, it is envisioned that this label-free and optic-free platform technology can be further developed as a versatile cost-effective process analytical tool to monitor or assess stem cell quality and safety in regenerative medicine.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.