Bingkai Han, Weijian Mao, Wei Ouyang, Qingchen Zhang, Tao Lei
{"title":"隐含角度加权因子的声学反向时间迁移成像条件及其在弹性 P-P 和 S-S 数据成像中的扩展应用","authors":"Bingkai Han, Weijian Mao, Wei Ouyang, Qingchen Zhang, Tao Lei","doi":"10.1111/1365-2478.13566","DOIUrl":null,"url":null,"abstract":"<p>The imaging condition is a crucial component of the reverse time migration. In its conventional form, it involves cross-correlating the extrapolated source- and receiver-side wavefields. Effective imaging conditions are usually developed to suppress imaging artefacts (e.g. low-wavenumber artefacts) and enhance the image quality. For acoustic reverse time migration, not only the scalar pressure but also their spatial and/or time derivatives are used in the imaging condition, similar to the gradient terms of adjoint tomography. These operations implicitly introduce additional angle-domain weighting factors to the image results. In this study, based on an analysis of angle-dependent properties of the existing imaging conditions, we propose a new imaging condition tailored for acoustic reverse time migration. It can be implemented efficiently using the variables within the finite-difference solver. Without explicitly measuring wave propagation directions, the proposed imaging condition can naturally suppress the low-wavenumber artefacts while maintaining a relatively wider imaging aperture, thereby corresponding to a broader wavenumber sampling range. Additionally, the evolved imaging conditions for imaging elastic P–P and S–S scattering and reflections are also formulated. In the angle domain, we conduct a comparative analysis between existing imaging conditions and the newly proposed ones. Various numerical examples are provided to demonstrate the advantages of the new imaging conditions. A comprehensive understanding of their angle-domain properties may be further beneficial to constructing reasonable inversion strategies for full waveform inversion.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An imaging condition for acoustic reverse time migration with implicit angle-dependent weighting factors and its extended applications for imaging elastic P–P and S–S data\",\"authors\":\"Bingkai Han, Weijian Mao, Wei Ouyang, Qingchen Zhang, Tao Lei\",\"doi\":\"10.1111/1365-2478.13566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The imaging condition is a crucial component of the reverse time migration. In its conventional form, it involves cross-correlating the extrapolated source- and receiver-side wavefields. Effective imaging conditions are usually developed to suppress imaging artefacts (e.g. low-wavenumber artefacts) and enhance the image quality. For acoustic reverse time migration, not only the scalar pressure but also their spatial and/or time derivatives are used in the imaging condition, similar to the gradient terms of adjoint tomography. These operations implicitly introduce additional angle-domain weighting factors to the image results. In this study, based on an analysis of angle-dependent properties of the existing imaging conditions, we propose a new imaging condition tailored for acoustic reverse time migration. It can be implemented efficiently using the variables within the finite-difference solver. Without explicitly measuring wave propagation directions, the proposed imaging condition can naturally suppress the low-wavenumber artefacts while maintaining a relatively wider imaging aperture, thereby corresponding to a broader wavenumber sampling range. Additionally, the evolved imaging conditions for imaging elastic P–P and S–S scattering and reflections are also formulated. In the angle domain, we conduct a comparative analysis between existing imaging conditions and the newly proposed ones. Various numerical examples are provided to demonstrate the advantages of the new imaging conditions. A comprehensive understanding of their angle-domain properties may be further beneficial to constructing reasonable inversion strategies for full waveform inversion.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13566\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13566","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
An imaging condition for acoustic reverse time migration with implicit angle-dependent weighting factors and its extended applications for imaging elastic P–P and S–S data
The imaging condition is a crucial component of the reverse time migration. In its conventional form, it involves cross-correlating the extrapolated source- and receiver-side wavefields. Effective imaging conditions are usually developed to suppress imaging artefacts (e.g. low-wavenumber artefacts) and enhance the image quality. For acoustic reverse time migration, not only the scalar pressure but also their spatial and/or time derivatives are used in the imaging condition, similar to the gradient terms of adjoint tomography. These operations implicitly introduce additional angle-domain weighting factors to the image results. In this study, based on an analysis of angle-dependent properties of the existing imaging conditions, we propose a new imaging condition tailored for acoustic reverse time migration. It can be implemented efficiently using the variables within the finite-difference solver. Without explicitly measuring wave propagation directions, the proposed imaging condition can naturally suppress the low-wavenumber artefacts while maintaining a relatively wider imaging aperture, thereby corresponding to a broader wavenumber sampling range. Additionally, the evolved imaging conditions for imaging elastic P–P and S–S scattering and reflections are also formulated. In the angle domain, we conduct a comparative analysis between existing imaging conditions and the newly proposed ones. Various numerical examples are provided to demonstrate the advantages of the new imaging conditions. A comprehensive understanding of their angle-domain properties may be further beneficial to constructing reasonable inversion strategies for full waveform inversion.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.