论模块不变论中的多项式不变环

Pub Date : 2024-06-27 DOI:10.1016/j.jpaa.2024.107758
Manoj Kummini , Mandira Mondal
{"title":"论模块不变论中的多项式不变环","authors":"Manoj Kummini ,&nbsp;Mandira Mondal","doi":"10.1016/j.jpaa.2024.107758","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>k</mi></math></span> be a field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, <em>V</em> a finite-dimensional <span><math><mi>k</mi></math></span>-vector-space, and <em>G</em> a finite <em>p</em>-group acting <span><math><mi>k</mi></math></span>-linearly on <em>V</em>. Let <span><math><mi>S</mi><mo>=</mo><mi>Sym</mi><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Confirming a conjecture of Shank-Wehlau-Broer, we show that if <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is a direct summand of <em>S</em>, then <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is a polynomial ring, in the following cases:</p><ul><li><span>(a)</span><span><p><span><math><mi>k</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><mi>V</mi><mo>=</mo><mn>4</mn></math></span>; or</p></span></li><li><span>(b)</span><span><p><span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></span></li></ul> In order to prove the above result, we also show that if <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>≥</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><mi>V</mi><mo>−</mo><mn>2</mn></math></span>, then the Hilbert ideal <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>S</mi></mrow></msub></math></span> is a complete intersection.</div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On polynomial invariant rings in modular invariant theory\",\"authors\":\"Manoj Kummini ,&nbsp;Mandira Mondal\",\"doi\":\"10.1016/j.jpaa.2024.107758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>k</mi></math></span> be a field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, <em>V</em> a finite-dimensional <span><math><mi>k</mi></math></span>-vector-space, and <em>G</em> a finite <em>p</em>-group acting <span><math><mi>k</mi></math></span>-linearly on <em>V</em>. Let <span><math><mi>S</mi><mo>=</mo><mi>Sym</mi><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Confirming a conjecture of Shank-Wehlau-Broer, we show that if <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is a direct summand of <em>S</em>, then <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is a polynomial ring, in the following cases:</p><ul><li><span>(a)</span><span><p><span><math><mi>k</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><mi>V</mi><mo>=</mo><mn>4</mn></math></span>; or</p></span></li><li><span>(b)</span><span><p><span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></span></li></ul> In order to prove the above result, we also show that if <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>≥</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><mi>V</mi><mo>−</mo><mn>2</mn></math></span>, then the Hilbert ideal <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>S</mi></mrow></msub></math></span> is a complete intersection.</div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 是一个特征域 , 一个有限维向量空间 , 和一个有限群线性作用于 .为了证实 Shank-Wehlau-Broer 的猜想,我们证明了在以下情况下,如果 是 ,那么 是多项式环的直接求和:为了证明上述结果,我们还证明了如果 ,那么希尔伯特理想是一个完全交集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On polynomial invariant rings in modular invariant theory

Let k be a field of characteristic p>0, V a finite-dimensional k-vector-space, and G a finite p-group acting k-linearly on V. Let S=SymV. Confirming a conjecture of Shank-Wehlau-Broer, we show that if SG is a direct summand of S, then SG is a polynomial ring, in the following cases:

  • (a)

    k=Fp and dimkV=4; or

  • (b)

    |G|=p3.

In order to prove the above result, we also show that if dimkVGdimkV2, then the Hilbert ideal hG,S is a complete intersection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信