{"title":"论模块不变论中的多项式不变环","authors":"Manoj Kummini , Mandira Mondal","doi":"10.1016/j.jpaa.2024.107758","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>k</mi></math></span> be a field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, <em>V</em> a finite-dimensional <span><math><mi>k</mi></math></span>-vector-space, and <em>G</em> a finite <em>p</em>-group acting <span><math><mi>k</mi></math></span>-linearly on <em>V</em>. Let <span><math><mi>S</mi><mo>=</mo><mi>Sym</mi><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Confirming a conjecture of Shank-Wehlau-Broer, we show that if <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is a direct summand of <em>S</em>, then <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is a polynomial ring, in the following cases:</p><ul><li><span>(a)</span><span><p><span><math><mi>k</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo></mo><mi>V</mi><mo>=</mo><mn>4</mn></math></span>; or</p></span></li><li><span>(b)</span><span><p><span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></span></li></ul> In order to prove the above result, we also show that if <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo></mo><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>≥</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo></mo><mi>V</mi><mo>−</mo><mn>2</mn></math></span>, then the Hilbert ideal <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>S</mi></mrow></msub></math></span> is a complete intersection.</div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On polynomial invariant rings in modular invariant theory\",\"authors\":\"Manoj Kummini , Mandira Mondal\",\"doi\":\"10.1016/j.jpaa.2024.107758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>k</mi></math></span> be a field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, <em>V</em> a finite-dimensional <span><math><mi>k</mi></math></span>-vector-space, and <em>G</em> a finite <em>p</em>-group acting <span><math><mi>k</mi></math></span>-linearly on <em>V</em>. Let <span><math><mi>S</mi><mo>=</mo><mi>Sym</mi><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Confirming a conjecture of Shank-Wehlau-Broer, we show that if <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is a direct summand of <em>S</em>, then <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is a polynomial ring, in the following cases:</p><ul><li><span>(a)</span><span><p><span><math><mi>k</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo></mo><mi>V</mi><mo>=</mo><mn>4</mn></math></span>; or</p></span></li><li><span>(b)</span><span><p><span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></span></li></ul> In order to prove the above result, we also show that if <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo></mo><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>≥</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo></mo><mi>V</mi><mo>−</mo><mn>2</mn></math></span>, then the Hilbert ideal <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>S</mi></mrow></msub></math></span> is a complete intersection.</div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On polynomial invariant rings in modular invariant theory
Let be a field of characteristic , V a finite-dimensional -vector-space, and G a finite p-group acting -linearly on V. Let . Confirming a conjecture of Shank-Wehlau-Broer, we show that if is a direct summand of S, then is a polynomial ring, in the following cases:
(a)
and ; or
(b)
.
In order to prove the above result, we also show that if , then the Hilbert ideal is a complete intersection.