有边环的大自形群

Pub Date : 2024-06-27 DOI:10.1016/j.jpaa.2024.107757
E. Bujalance , F.J. Cirre , J.M. Gamboa
{"title":"有边环的大自形群","authors":"E. Bujalance ,&nbsp;F.J. Cirre ,&nbsp;J.M. Gamboa","doi":"10.1016/j.jpaa.2024.107757","DOIUrl":null,"url":null,"abstract":"<div><p>We study large groups of automorphisms of compact orientable bordered Klein surfaces of topological genus one. Here, <em>large</em> means that the order of the group is greater than or equal to <span><math><mn>4</mn><mo>(</mo><mi>g</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span> is the algebraic genus of the surface. We find all such groups, providing presentations by means of generators and relations of them. We also determine which of these groups act as the full automorphism group of some bordered torus.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001543/pdfft?md5=7c2f0e2211052948517b0149c23295e8&pid=1-s2.0-S0022404924001543-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Large automorphism groups of bordered tori\",\"authors\":\"E. Bujalance ,&nbsp;F.J. Cirre ,&nbsp;J.M. Gamboa\",\"doi\":\"10.1016/j.jpaa.2024.107757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study large groups of automorphisms of compact orientable bordered Klein surfaces of topological genus one. Here, <em>large</em> means that the order of the group is greater than or equal to <span><math><mn>4</mn><mo>(</mo><mi>g</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span> is the algebraic genus of the surface. We find all such groups, providing presentations by means of generators and relations of them. We also determine which of these groups act as the full automorphism group of some bordered torus.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001543/pdfft?md5=7c2f0e2211052948517b0149c23295e8&pid=1-s2.0-S0022404924001543-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究拓扑属一的紧凑可定向有边克莱因曲面的大自形群。这里,表示该群的阶大于或等于 ,这里是曲面的代数属。我们找到了所有这样的群,并通过它们的生成器和关系提供了表述。我们还将确定这些群中哪些群是某些有边环面的全自形群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Large automorphism groups of bordered tori

We study large groups of automorphisms of compact orientable bordered Klein surfaces of topological genus one. Here, large means that the order of the group is greater than or equal to 4(g1), where g2 is the algebraic genus of the surface. We find all such groups, providing presentations by means of generators and relations of them. We also determine which of these groups act as the full automorphism group of some bordered torus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信