Richard S. Jones, Lauren E. Miller, Matthew J. Westoby
{"title":"地貌学如何促进更好地了解冰川和冰盖的行为?","authors":"Richard S. Jones, Lauren E. Miller, Matthew J. Westoby","doi":"10.1002/esp.5932","DOIUrl":null,"url":null,"abstract":"<p>Glaciers and ice sheets are an integral part of Earth's system, advancing and retreating in response to changes in climate. Clues about the past, present and future behaviour of these ice masses are found throughout current and former glaciated landscapes. In this commentary, we outline recent scientific advances from a collection of articles in which geomorphological evidence is used to inform us about the behaviour of glaciers and ice sheets across a range of spatial (landform to continent) and temporal (seasons to millennia) scales. Through a diversity of approaches including field measurements, remote sensing and numerical modelling, these studies build on an extensive background literature to deepen our understanding of how ice flows, how glaciers and ice sheets respond to climate change, and of the processes of ice advance and retreat and the stability of the system. Further integration of knowledge across the fields of geomorphology and glaciology will have tangible benefits for managing the societal and environmental impacts of glacier change and for improved projections of sea-level rise over the coming decades to centuries.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 12","pages":"3677-3683"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.5932","citationCount":"0","resultStr":"{\"title\":\"How can geomorphology facilitate a better understanding of glacier and ice sheet behaviour?\",\"authors\":\"Richard S. Jones, Lauren E. Miller, Matthew J. Westoby\",\"doi\":\"10.1002/esp.5932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glaciers and ice sheets are an integral part of Earth's system, advancing and retreating in response to changes in climate. Clues about the past, present and future behaviour of these ice masses are found throughout current and former glaciated landscapes. In this commentary, we outline recent scientific advances from a collection of articles in which geomorphological evidence is used to inform us about the behaviour of glaciers and ice sheets across a range of spatial (landform to continent) and temporal (seasons to millennia) scales. Through a diversity of approaches including field measurements, remote sensing and numerical modelling, these studies build on an extensive background literature to deepen our understanding of how ice flows, how glaciers and ice sheets respond to climate change, and of the processes of ice advance and retreat and the stability of the system. Further integration of knowledge across the fields of geomorphology and glaciology will have tangible benefits for managing the societal and environmental impacts of glacier change and for improved projections of sea-level rise over the coming decades to centuries.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"49 12\",\"pages\":\"3677-3683\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.5932\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.5932\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.5932","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
How can geomorphology facilitate a better understanding of glacier and ice sheet behaviour?
Glaciers and ice sheets are an integral part of Earth's system, advancing and retreating in response to changes in climate. Clues about the past, present and future behaviour of these ice masses are found throughout current and former glaciated landscapes. In this commentary, we outline recent scientific advances from a collection of articles in which geomorphological evidence is used to inform us about the behaviour of glaciers and ice sheets across a range of spatial (landform to continent) and temporal (seasons to millennia) scales. Through a diversity of approaches including field measurements, remote sensing and numerical modelling, these studies build on an extensive background literature to deepen our understanding of how ice flows, how glaciers and ice sheets respond to climate change, and of the processes of ice advance and retreat and the stability of the system. Further integration of knowledge across the fields of geomorphology and glaciology will have tangible benefits for managing the societal and environmental impacts of glacier change and for improved projections of sea-level rise over the coming decades to centuries.
期刊介绍:
Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with:
the interactions between surface processes and landforms and landscapes;
that lead to physical, chemical and biological changes; and which in turn create;
current landscapes and the geological record of past landscapes.
Its focus is core to both physical geographical and geological communities, and also the wider geosciences