基于废水的 COVID-19 流行病学监测在城市疾病监测中的应用

IF 6.1 2区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Heng Chen, Zhenhua Chen, Liwen Hu, Fengzhu Tang, Dan Kuang, Jiayi Han, Yao Wang, Xiao Zhang, Yue Cheng, Jiantong Meng, Rong Lu, Lan Zhang
{"title":"基于废水的 COVID-19 流行病学监测在城市疾病监测中的应用","authors":"Heng Chen, Zhenhua Chen, Liwen Hu, Fengzhu Tang, Dan Kuang, Jiayi Han, Yao Wang, Xiao Zhang, Yue Cheng, Jiantong Meng, Rong Lu, Lan Zhang","doi":"10.1007/s11783-024-1858-6","DOIUrl":null,"url":null,"abstract":"<p>Wastewater-based surveillance serves as a supplementary approach to clinical surveillance of COVID-19 during the epidemic. This study aimed to track the prevalence of the disease and the viral genetic variability through wastewater-based surveillance in the post-epidemic era. Between January to December 2023, samples were collected from the influent lines of two wastewater treatment plants (WWTPs), concentrated using PEG8000, and subjected to detection of the target genes ORF 1ab and N of SARS-CoV-2 via reverse transcriptional quantitative PCR (RT-qPCR). For next-generation sequencing (NGS), high-quality samples from both wastewater and clinical patients were selected. Weekly analysis were performed using R software to evaluate the correlation between the SARS-CoV-2 RNA concentrations in wastewater and positive rate of reported cases, indicating a positive correlation. Genetic diversity patterns of SARS-CoV-2 in wastewater resembled those in the patient source based on Principal Coordinates Analysis (PCoA) with three clusters for different stages. The rise of RNA concentration in wastewater indicates the growth of cases and the emergence of new variants, serving as an early warning of potential viral mutations, disease outbreaks even possible epidemics. Furthermore, the genomic surveillance of wastewater could help identify new variants that may not be captured through population monitoring, especially when sample sizes are insufficient. Consequently, surveillance of SARS-CoV-2 in municipal wastewater has emerged as a reliable, early-warning monitoring system for COVID-19 in the post-epidemic era.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"45 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of wastewater-based epidemiological monitoring of COVID-19 for disease surveillance in the city\",\"authors\":\"Heng Chen, Zhenhua Chen, Liwen Hu, Fengzhu Tang, Dan Kuang, Jiayi Han, Yao Wang, Xiao Zhang, Yue Cheng, Jiantong Meng, Rong Lu, Lan Zhang\",\"doi\":\"10.1007/s11783-024-1858-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wastewater-based surveillance serves as a supplementary approach to clinical surveillance of COVID-19 during the epidemic. This study aimed to track the prevalence of the disease and the viral genetic variability through wastewater-based surveillance in the post-epidemic era. Between January to December 2023, samples were collected from the influent lines of two wastewater treatment plants (WWTPs), concentrated using PEG8000, and subjected to detection of the target genes ORF 1ab and N of SARS-CoV-2 via reverse transcriptional quantitative PCR (RT-qPCR). For next-generation sequencing (NGS), high-quality samples from both wastewater and clinical patients were selected. Weekly analysis were performed using R software to evaluate the correlation between the SARS-CoV-2 RNA concentrations in wastewater and positive rate of reported cases, indicating a positive correlation. Genetic diversity patterns of SARS-CoV-2 in wastewater resembled those in the patient source based on Principal Coordinates Analysis (PCoA) with three clusters for different stages. The rise of RNA concentration in wastewater indicates the growth of cases and the emergence of new variants, serving as an early warning of potential viral mutations, disease outbreaks even possible epidemics. Furthermore, the genomic surveillance of wastewater could help identify new variants that may not be captured through population monitoring, especially when sample sizes are insufficient. Consequently, surveillance of SARS-CoV-2 in municipal wastewater has emerged as a reliable, early-warning monitoring system for COVID-19 in the post-epidemic era.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1858-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1858-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在 COVID-19 流行期间,废水监测是临床监测的一种补充方法。本研究旨在通过后疫情时代的废水监测来跟踪该疾病的流行情况和病毒基因变异。2023 年 1 月至 12 月期间,研究人员从两家污水处理厂的进水管道中采集样本,使用 PEG8000 进行浓缩,并通过反转录定量 PCR(RT-qPCR)检测 SARS-CoV-2 的目标基因 ORF 1ab 和 N。下一代测序(NGS)从废水和临床患者中选取高质量样本。使用 R 软件进行每周分析,评估废水中 SARS-CoV-2 RNA 浓度与报告病例阳性率之间的相关性,结果显示两者呈正相关。根据主坐标分析法(PCoA),废水中的 SARS-CoV-2 基因多样性模式与患者来源中的相似,不同阶段有三个聚类。废水中 RNA 浓度的上升表明病例的增加和新变种的出现,可作为潜在病毒变异、疾病爆发甚至可能流行的预警。此外,对废水进行基因组监测有助于发现人群监测可能无法捕捉到的新变种,特别是在样本量不足的情况下。因此,对城市污水中的 SARS-CoV-2 进行监测已成为 COVID-19 在后疫情时代的一个可靠的预警监测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of wastewater-based epidemiological monitoring of COVID-19 for disease surveillance in the city

Application of wastewater-based epidemiological monitoring of COVID-19 for disease surveillance in the city

Wastewater-based surveillance serves as a supplementary approach to clinical surveillance of COVID-19 during the epidemic. This study aimed to track the prevalence of the disease and the viral genetic variability through wastewater-based surveillance in the post-epidemic era. Between January to December 2023, samples were collected from the influent lines of two wastewater treatment plants (WWTPs), concentrated using PEG8000, and subjected to detection of the target genes ORF 1ab and N of SARS-CoV-2 via reverse transcriptional quantitative PCR (RT-qPCR). For next-generation sequencing (NGS), high-quality samples from both wastewater and clinical patients were selected. Weekly analysis were performed using R software to evaluate the correlation between the SARS-CoV-2 RNA concentrations in wastewater and positive rate of reported cases, indicating a positive correlation. Genetic diversity patterns of SARS-CoV-2 in wastewater resembled those in the patient source based on Principal Coordinates Analysis (PCoA) with three clusters for different stages. The rise of RNA concentration in wastewater indicates the growth of cases and the emergence of new variants, serving as an early warning of potential viral mutations, disease outbreaks even possible epidemics. Furthermore, the genomic surveillance of wastewater could help identify new variants that may not be captured through population monitoring, especially when sample sizes are insufficient. Consequently, surveillance of SARS-CoV-2 in municipal wastewater has emerged as a reliable, early-warning monitoring system for COVID-19 in the post-epidemic era.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Environmental Science & Engineering
Frontiers of Environmental Science & Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
10.90
自引率
12.50%
发文量
988
审稿时长
6.1 months
期刊介绍: Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines. FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信