基于 IsoAlpha 的混合行进立方体界面重建法

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
G.S. Abhishek, Shyamprasad Karagadde
{"title":"基于 IsoAlpha 的混合行进立方体界面重建法","authors":"G.S. Abhishek,&nbsp;Shyamprasad Karagadde","doi":"10.1002/fld.5320","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In modelling two-phase flows, accurate representation of interfaces is crucial. A class of methods for interface reconstruction are based on isosurface extraction, which involves a non-iterative, interpolation based approach. These approaches have been shown to be faster by an order of magnitude than the conventional PLIC schemes. In this work, we present a new isosurface extraction based interface reconstruction scheme based on the Marching Cubes algorithm (MC), which is commonly used in computer graphics for visualizing isosurfaces. The MC algorithm apriori lists and categorizes all possible interface configurations in a single grid cell into a Look Up Table (LUT), which makes this approach fast and robust. We also show that for certain interface configurations, the inverse problem of obtaining the isovalue from the cell volume fraction is not surjective, and a special treatment is required while handling these cases. We then demonstrate the capabilities of the method through benchmark cases for 2D and 3D static/dynamic interface reconstruction.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 11","pages":"1741-1759"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid marching cubes based IsoAlpha method for interface reconstruction\",\"authors\":\"G.S. Abhishek,&nbsp;Shyamprasad Karagadde\",\"doi\":\"10.1002/fld.5320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In modelling two-phase flows, accurate representation of interfaces is crucial. A class of methods for interface reconstruction are based on isosurface extraction, which involves a non-iterative, interpolation based approach. These approaches have been shown to be faster by an order of magnitude than the conventional PLIC schemes. In this work, we present a new isosurface extraction based interface reconstruction scheme based on the Marching Cubes algorithm (MC), which is commonly used in computer graphics for visualizing isosurfaces. The MC algorithm apriori lists and categorizes all possible interface configurations in a single grid cell into a Look Up Table (LUT), which makes this approach fast and robust. We also show that for certain interface configurations, the inverse problem of obtaining the isovalue from the cell volume fraction is not surjective, and a special treatment is required while handling these cases. We then demonstrate the capabilities of the method through benchmark cases for 2D and 3D static/dynamic interface reconstruction.</p>\\n </div>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 11\",\"pages\":\"1741-1759\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5320\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5320","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在模拟两相流时,准确表示界面至关重要。有一类界面重建方法是基于等值面提取,其中涉及一种非迭代、基于插值的方法。事实证明,这些方法比传统的 PLIC 方案要快一个数量级。在这项工作中,我们提出了一种新的基于等值面提取的界面重建方案,该方案基于行进立方体算法(MC),该算法通常用于计算机图形学中的等值面可视化。MC 算法先将单个网格单元中所有可能的界面配置列出并归类到一个查找表(LUT)中,从而使这种方法既快速又稳健。我们还证明,对于某些界面配置,从单元体积分数获得等值的逆问题并不是可投射的,在处理这些情况时需要特殊处理。然后,我们通过二维和三维静态/动态界面重建的基准案例展示了该方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid marching cubes based IsoAlpha method for interface reconstruction

In modelling two-phase flows, accurate representation of interfaces is crucial. A class of methods for interface reconstruction are based on isosurface extraction, which involves a non-iterative, interpolation based approach. These approaches have been shown to be faster by an order of magnitude than the conventional PLIC schemes. In this work, we present a new isosurface extraction based interface reconstruction scheme based on the Marching Cubes algorithm (MC), which is commonly used in computer graphics for visualizing isosurfaces. The MC algorithm apriori lists and categorizes all possible interface configurations in a single grid cell into a Look Up Table (LUT), which makes this approach fast and robust. We also show that for certain interface configurations, the inverse problem of obtaining the isovalue from the cell volume fraction is not surjective, and a special treatment is required while handling these cases. We then demonstrate the capabilities of the method through benchmark cases for 2D and 3D static/dynamic interface reconstruction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信