Jingjing Zhang;Feng Yang;Yuanzhai Xu;Hongwei Gao;Yong Bo
{"title":"关于 LiInS2 中 3-5 μm 中红外光参量放大特性的研究","authors":"Jingjing Zhang;Feng Yang;Yuanzhai Xu;Hongwei Gao;Yong Bo","doi":"10.1109/JPHOT.2024.3422989","DOIUrl":null,"url":null,"abstract":"The optical parametric amplification process in the mid-infrared (MIR) 3–5 μm region of nonlinear crystal LiInS\n<sub>2</sub>\n (LIS) has been investigated. The LIS crystal was pumped by a 1064 nm laser with a pulse width of 30 picoseconds and seeded by a tunable laser generated from a KTP-OPG/OPA pumped by the second harmonic (SH) of the same 1064 nm laser. In the experiment, the 3.28–5.50 μm tunable idler was realized. When the fixed pump energy is 8.75 mJ, the idler energy obtained is 72.2 μJ at 3.28 μm and 63.3 μJ at 5.50 μm. The maximum idler energy of 179.4 μJ at 4.70 μm is reached at a pump energy of 12.5 mJ, and the optimal photon conversion efficiency is 6.36% at the pump energy of 11.5 mJ. Finally, the optical parametric frequency conversion parameters and performance in the 3–5 μm of several typical new crystals (BGSe, LISe, AGS, HGS, and LGS) developed in recent years are briefly compared and summarized.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-4"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10585286","citationCount":"0","resultStr":"{\"title\":\"Investigation on Characteristics of 3–5 μm Mid-Infrared Optical Parametric Amplification in LiInS2\",\"authors\":\"Jingjing Zhang;Feng Yang;Yuanzhai Xu;Hongwei Gao;Yong Bo\",\"doi\":\"10.1109/JPHOT.2024.3422989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical parametric amplification process in the mid-infrared (MIR) 3–5 μm region of nonlinear crystal LiInS\\n<sub>2</sub>\\n (LIS) has been investigated. The LIS crystal was pumped by a 1064 nm laser with a pulse width of 30 picoseconds and seeded by a tunable laser generated from a KTP-OPG/OPA pumped by the second harmonic (SH) of the same 1064 nm laser. In the experiment, the 3.28–5.50 μm tunable idler was realized. When the fixed pump energy is 8.75 mJ, the idler energy obtained is 72.2 μJ at 3.28 μm and 63.3 μJ at 5.50 μm. The maximum idler energy of 179.4 μJ at 4.70 μm is reached at a pump energy of 12.5 mJ, and the optimal photon conversion efficiency is 6.36% at the pump energy of 11.5 mJ. Finally, the optical parametric frequency conversion parameters and performance in the 3–5 μm of several typical new crystals (BGSe, LISe, AGS, HGS, and LGS) developed in recent years are briefly compared and summarized.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 5\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10585286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10585286/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10585286/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigation on Characteristics of 3–5 μm Mid-Infrared Optical Parametric Amplification in LiInS2
The optical parametric amplification process in the mid-infrared (MIR) 3–5 μm region of nonlinear crystal LiInS
2
(LIS) has been investigated. The LIS crystal was pumped by a 1064 nm laser with a pulse width of 30 picoseconds and seeded by a tunable laser generated from a KTP-OPG/OPA pumped by the second harmonic (SH) of the same 1064 nm laser. In the experiment, the 3.28–5.50 μm tunable idler was realized. When the fixed pump energy is 8.75 mJ, the idler energy obtained is 72.2 μJ at 3.28 μm and 63.3 μJ at 5.50 μm. The maximum idler energy of 179.4 μJ at 4.70 μm is reached at a pump energy of 12.5 mJ, and the optimal photon conversion efficiency is 6.36% at the pump energy of 11.5 mJ. Finally, the optical parametric frequency conversion parameters and performance in the 3–5 μm of several typical new crystals (BGSe, LISe, AGS, HGS, and LGS) developed in recent years are briefly compared and summarized.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.