利用 MODIS 产品对印度地区生物质燃烧的时空变化进行长期研究

IF 1.3 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
SWAPNIL S POTDAR, DEVENDRAA SIINGH, R P SINGH
{"title":"利用 MODIS 产品对印度地区生物质燃烧的时空变化进行长期研究","authors":"SWAPNIL S POTDAR, DEVENDRAA SIINGH, R P SINGH","doi":"10.1007/s12040-024-02351-x","DOIUrl":null,"url":null,"abstract":"<p>Spatiotemporal variations of biomass burning (BB) over the Indian region using satellite-based data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period 2003–2021 are analyzed and studied. We have used fire products with a high confidence level (≥ 80%), which is free from false alarm fires. The total fire counts (TFC), fire radiative power (FRP), and burned area (BA) for different land use and land cover (LULC) types over six different regions, namely Central India (CI), Indian Gangetic Plain (IGP), North-East India (NEI), North India (NI), South India (SI) and West India (WI) are studied. The biomass burning shows spatial, seasonal and inter-annual variations. Within the regions, different hotspots are identified for cropland burning, forest burning, etc. It is observed that in the IGP and WI regions, burning activity shows bi-modal seasonal behaviour, which coincides with crop burning after harvesting seasons, while other regions show a single mode. Non-parametric long-term analysis in TFC and TFRP (derived by adding FRP of all the fire hotspots in a respective year) shows a positive trend over all the regions except in the NEI region. The decreasing TFC with increasing precipitation is also observed in all the considered regions, which is attributed to enhanced moisture and decreased temperature. The present study provides the scientific basis for addressing the origin and type of biomass burning in different regions of India, and it is quite useful for developing procedures, awareness, and planning for reducing BB, which is quite harmful to human health as well as the environment.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term study of spatial and temporal variations in biomass burning over the Indian region using MODIS products\",\"authors\":\"SWAPNIL S POTDAR, DEVENDRAA SIINGH, R P SINGH\",\"doi\":\"10.1007/s12040-024-02351-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatiotemporal variations of biomass burning (BB) over the Indian region using satellite-based data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period 2003–2021 are analyzed and studied. We have used fire products with a high confidence level (≥ 80%), which is free from false alarm fires. The total fire counts (TFC), fire radiative power (FRP), and burned area (BA) for different land use and land cover (LULC) types over six different regions, namely Central India (CI), Indian Gangetic Plain (IGP), North-East India (NEI), North India (NI), South India (SI) and West India (WI) are studied. The biomass burning shows spatial, seasonal and inter-annual variations. Within the regions, different hotspots are identified for cropland burning, forest burning, etc. It is observed that in the IGP and WI regions, burning activity shows bi-modal seasonal behaviour, which coincides with crop burning after harvesting seasons, while other regions show a single mode. Non-parametric long-term analysis in TFC and TFRP (derived by adding FRP of all the fire hotspots in a respective year) shows a positive trend over all the regions except in the NEI region. The decreasing TFC with increasing precipitation is also observed in all the considered regions, which is attributed to enhanced moisture and decreased temperature. The present study provides the scientific basis for addressing the origin and type of biomass burning in different regions of India, and it is quite useful for developing procedures, awareness, and planning for reducing BB, which is quite harmful to human health as well as the environment.</p>\",\"PeriodicalId\":15609,\"journal\":{\"name\":\"Journal of Earth System Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth System Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12040-024-02351-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02351-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用中分辨率成像分光仪(MODIS)提供的 2003-2021 年印度地区生物质燃烧(BB)的卫星数据,对其时空变化进行了分析和研究。我们使用了高置信度(≥ 80%)的火灾产品,其中不含误报火灾。我们研究了印度中部(CI)、印度恒河平原(IGP)、印度东北部(NEI)、印度北部(NI)、印度南部(SI)和印度西部(WI)六个不同地区不同土地利用和土地覆被类型的总火灾次数(TFC)、火灾辐射功率(FRP)和燃烧面积(BA)。生物质燃烧呈现出空间、季节和年际变化。在这些区域内,耕地燃烧、森林燃烧等热点地区各不相同。据观察,在 IGP 和 WI 地区,焚烧活动呈现双模季节性行为,与收获季节后的作物焚烧相吻合,而其他地区则呈现单一模式。对 TFC 和 TFRP(将相应年份所有火灾热点的 FRP 相加得出)的非参数长期分析表明,除东北地区外,所有地区的 TFC 和 TFRP 均呈正趋势。在所有研究区域,随着降水量的增加,TFC 也呈下降趋势,这归因于湿度的增加和温度的降低。本研究为解决印度不同地区生物质燃烧的起源和类型问题提供了科学依据,对于制定减少对人类健康和环境造成严重危害的 BB 的程序、意识和规划非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long-term study of spatial and temporal variations in biomass burning over the Indian region using MODIS products

Long-term study of spatial and temporal variations in biomass burning over the Indian region using MODIS products

Spatiotemporal variations of biomass burning (BB) over the Indian region using satellite-based data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period 2003–2021 are analyzed and studied. We have used fire products with a high confidence level (≥ 80%), which is free from false alarm fires. The total fire counts (TFC), fire radiative power (FRP), and burned area (BA) for different land use and land cover (LULC) types over six different regions, namely Central India (CI), Indian Gangetic Plain (IGP), North-East India (NEI), North India (NI), South India (SI) and West India (WI) are studied. The biomass burning shows spatial, seasonal and inter-annual variations. Within the regions, different hotspots are identified for cropland burning, forest burning, etc. It is observed that in the IGP and WI regions, burning activity shows bi-modal seasonal behaviour, which coincides with crop burning after harvesting seasons, while other regions show a single mode. Non-parametric long-term analysis in TFC and TFRP (derived by adding FRP of all the fire hotspots in a respective year) shows a positive trend over all the regions except in the NEI region. The decreasing TFC with increasing precipitation is also observed in all the considered regions, which is attributed to enhanced moisture and decreased temperature. The present study provides the scientific basis for addressing the origin and type of biomass burning in different regions of India, and it is quite useful for developing procedures, awareness, and planning for reducing BB, which is quite harmful to human health as well as the environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Earth System Science
Journal of Earth System Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
3.20
自引率
5.30%
发文量
226
期刊介绍: The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’. The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria. The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region. A model study is carried out to explain observations reported either in the same manuscript or in the literature. The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信