{"title":"镁合金线弧增材制造综述:线材制备、缺陷和性能","authors":"Yi Li, Siqi Yin, Guangzong Zhang, Changfeng Wang, Xiao Liu, Renguo Guan","doi":"10.1007/s12540-024-01724-7","DOIUrl":null,"url":null,"abstract":"<p>Wire arc additive manufacturing (WAAM) is widely used in the rapid prototyping of large parts because of its high deposition rate, high material utilization rate as well as low cost. However, the manufacturing process of magnesium alloy wires is relatively difficult, and the defects and performance of parts are difficult to control. This paper reviews the preparation process of magnesium alloy wires, which aims to achieve surface control and performance optimization of wires. Due to the quality of wires and the high processing temperature, the defects often occur in the deposition process. The common defects of magnesium alloy parts by WAAM are discussed and solutions are given to minimize it. The research advances in microstructure, mechanical properties, damping properties and corrosion properties are summarized. WAAM has performance advantages compared to casting, but the microstructure is inhomogeneous and the properties are anisotropic. Several quality improvement strategies are reported to improve properties and reduce defects. The effectiveness and applicability of these strategies are discussed, and the future prospects of WAAM for magnesium alloys are proposed. The preparation of high-performance wires, the formation mechanism of defects and microstructure are three keys for future improvement of WAAM for magnesium alloy.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Wire Arc Additive Manufacturing of Magnesium Alloys: Wire Preparation, Defects and Properties\",\"authors\":\"Yi Li, Siqi Yin, Guangzong Zhang, Changfeng Wang, Xiao Liu, Renguo Guan\",\"doi\":\"10.1007/s12540-024-01724-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wire arc additive manufacturing (WAAM) is widely used in the rapid prototyping of large parts because of its high deposition rate, high material utilization rate as well as low cost. However, the manufacturing process of magnesium alloy wires is relatively difficult, and the defects and performance of parts are difficult to control. This paper reviews the preparation process of magnesium alloy wires, which aims to achieve surface control and performance optimization of wires. Due to the quality of wires and the high processing temperature, the defects often occur in the deposition process. The common defects of magnesium alloy parts by WAAM are discussed and solutions are given to minimize it. The research advances in microstructure, mechanical properties, damping properties and corrosion properties are summarized. WAAM has performance advantages compared to casting, but the microstructure is inhomogeneous and the properties are anisotropic. Several quality improvement strategies are reported to improve properties and reduce defects. The effectiveness and applicability of these strategies are discussed, and the future prospects of WAAM for magnesium alloys are proposed. The preparation of high-performance wires, the formation mechanism of defects and microstructure are three keys for future improvement of WAAM for magnesium alloy.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12540-024-01724-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01724-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Review on Wire Arc Additive Manufacturing of Magnesium Alloys: Wire Preparation, Defects and Properties
Wire arc additive manufacturing (WAAM) is widely used in the rapid prototyping of large parts because of its high deposition rate, high material utilization rate as well as low cost. However, the manufacturing process of magnesium alloy wires is relatively difficult, and the defects and performance of parts are difficult to control. This paper reviews the preparation process of magnesium alloy wires, which aims to achieve surface control and performance optimization of wires. Due to the quality of wires and the high processing temperature, the defects often occur in the deposition process. The common defects of magnesium alloy parts by WAAM are discussed and solutions are given to minimize it. The research advances in microstructure, mechanical properties, damping properties and corrosion properties are summarized. WAAM has performance advantages compared to casting, but the microstructure is inhomogeneous and the properties are anisotropic. Several quality improvement strategies are reported to improve properties and reduce defects. The effectiveness and applicability of these strategies are discussed, and the future prospects of WAAM for magnesium alloys are proposed. The preparation of high-performance wires, the formation mechanism of defects and microstructure are three keys for future improvement of WAAM for magnesium alloy.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.