{"title":"量子力学、辐射和等效证明","authors":"Alexander Blum, Martin Jähnert","doi":"10.1007/s00407-024-00334-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper re-evaluates the formative year of quantum mechanics—from Heisenberg’s first paper on matrix mechanics to Schrödinger’s equivalence proof—by focusing on the role of radiation in the emerging theory. We argue that the radiation problem played a key role in early quantum mechanics, a role that has not been taken into account in the standard histories. Radiation was perceived by the main protagonists of matrix and wave mechanics as a central lacuna in these emerging theories and continued to contribute to the theoretical development and conceptual clarification of quantum mechanics. Studying the interplay between quantum mechanics and radiation, the paper provides an account of (a) how quantum mechanics was able to connect to its empirical basis in spectroscopy and (b) how Schrödinger’s equivalence proof emerged from his explorative calculations on the emission of radiation.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-024-00334-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum mechanics, radiation, and the equivalence proof\",\"authors\":\"Alexander Blum, Martin Jähnert\",\"doi\":\"10.1007/s00407-024-00334-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper re-evaluates the formative year of quantum mechanics—from Heisenberg’s first paper on matrix mechanics to Schrödinger’s equivalence proof—by focusing on the role of radiation in the emerging theory. We argue that the radiation problem played a key role in early quantum mechanics, a role that has not been taken into account in the standard histories. Radiation was perceived by the main protagonists of matrix and wave mechanics as a central lacuna in these emerging theories and continued to contribute to the theoretical development and conceptual clarification of quantum mechanics. Studying the interplay between quantum mechanics and radiation, the paper provides an account of (a) how quantum mechanics was able to connect to its empirical basis in spectroscopy and (b) how Schrödinger’s equivalence proof emerged from his explorative calculations on the emission of radiation.</p></div>\",\"PeriodicalId\":50982,\"journal\":{\"name\":\"Archive for History of Exact Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00407-024-00334-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for History of Exact Sciences\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00407-024-00334-4\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-024-00334-4","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Quantum mechanics, radiation, and the equivalence proof
This paper re-evaluates the formative year of quantum mechanics—from Heisenberg’s first paper on matrix mechanics to Schrödinger’s equivalence proof—by focusing on the role of radiation in the emerging theory. We argue that the radiation problem played a key role in early quantum mechanics, a role that has not been taken into account in the standard histories. Radiation was perceived by the main protagonists of matrix and wave mechanics as a central lacuna in these emerging theories and continued to contribute to the theoretical development and conceptual clarification of quantum mechanics. Studying the interplay between quantum mechanics and radiation, the paper provides an account of (a) how quantum mechanics was able to connect to its empirical basis in spectroscopy and (b) how Schrödinger’s equivalence proof emerged from his explorative calculations on the emission of radiation.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.