缩小空间互动与社会经济属性的比例

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Chengling Tang, Lei Dong, Hao Guo, Xuechen Wang, Xiao-Jian Chen, Quanhua Dong, Yu Liu
{"title":"缩小空间互动与社会经济属性的比例","authors":"Chengling Tang, Lei Dong, Hao Guo, Xuechen Wang, Xiao-Jian Chen, Quanhua Dong, Yu Liu","doi":"10.1140/epjds/s13688-024-00487-w","DOIUrl":null,"url":null,"abstract":"<p>A variety of complex socioeconomic phenomena, for example, migration, commuting, and trade can be abstracted by spatial interaction networks, where nodes represent geographic locations and weighted edges convey the interaction and its strength. However, obtaining fine-grained spatial interaction data is very challenging in practice due to limitations in collection methods and costs, so spatial interaction data such as transportation data and trade data are often only available at a coarse scale. Here, we propose a gravity downscaling (GD) method based on readily accessible socioeconomic data and the gravity law to infer fine-grained interactions from coarse-grained data. GD assumes that interactions of different spatial scales are governed by the similar gravity law and thus can transfer the parameters estimated from coarse-grained regions to fine-grained regions. Results show that GD has an average improvement of 24.6% in Mean Absolute Percentage Error over alternative downscaling methods (i.e., the areal-weighted method and machine learning models) across datasets with different spatial scales and in various regions. Using simple assumptions, GD enables accurate downscaling of spatial interactions, making it applicable to a wide range of fields, including human mobility, transportation, and trade.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"24 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downscaling spatial interaction with socioeconomic attributes\",\"authors\":\"Chengling Tang, Lei Dong, Hao Guo, Xuechen Wang, Xiao-Jian Chen, Quanhua Dong, Yu Liu\",\"doi\":\"10.1140/epjds/s13688-024-00487-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A variety of complex socioeconomic phenomena, for example, migration, commuting, and trade can be abstracted by spatial interaction networks, where nodes represent geographic locations and weighted edges convey the interaction and its strength. However, obtaining fine-grained spatial interaction data is very challenging in practice due to limitations in collection methods and costs, so spatial interaction data such as transportation data and trade data are often only available at a coarse scale. Here, we propose a gravity downscaling (GD) method based on readily accessible socioeconomic data and the gravity law to infer fine-grained interactions from coarse-grained data. GD assumes that interactions of different spatial scales are governed by the similar gravity law and thus can transfer the parameters estimated from coarse-grained regions to fine-grained regions. Results show that GD has an average improvement of 24.6% in Mean Absolute Percentage Error over alternative downscaling methods (i.e., the areal-weighted method and machine learning models) across datasets with different spatial scales and in various regions. Using simple assumptions, GD enables accurate downscaling of spatial interactions, making it applicable to a wide range of fields, including human mobility, transportation, and trade.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-024-00487-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00487-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

各种复杂的社会经济现象,例如移民、通勤和贸易,都可以通过空间互动网络来抽象,其中节点代表地理位置,加权边则表示互动及其强度。然而,由于收集方法和成本的限制,获取细粒度的空间交互数据在实践中非常具有挑战性,因此交通数据和贸易数据等空间交互数据往往只能在粗尺度上获得。在此,我们提出了一种重力降尺度(GD)方法,该方法基于易于获取的社会经济数据和重力定律,可从粗粒度数据中推断出细粒度的相互作用。重力降尺度法假定不同空间尺度的相互作用受类似重力定律的支配,因此可以将从粗粒度区域估算的参数转移到细粒度区域。结果表明,在不同空间尺度和不同区域的数据集上,GD 与其他降尺度方法(即均值加权法和机器学习模型)相比,平均绝对百分比误差平均改善了 24.6%。利用简单的假设,GD 可以对空间相互作用进行精确降尺度,因此适用于包括人类流动、交通和贸易在内的广泛领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Downscaling spatial interaction with socioeconomic attributes

Downscaling spatial interaction with socioeconomic attributes

A variety of complex socioeconomic phenomena, for example, migration, commuting, and trade can be abstracted by spatial interaction networks, where nodes represent geographic locations and weighted edges convey the interaction and its strength. However, obtaining fine-grained spatial interaction data is very challenging in practice due to limitations in collection methods and costs, so spatial interaction data such as transportation data and trade data are often only available at a coarse scale. Here, we propose a gravity downscaling (GD) method based on readily accessible socioeconomic data and the gravity law to infer fine-grained interactions from coarse-grained data. GD assumes that interactions of different spatial scales are governed by the similar gravity law and thus can transfer the parameters estimated from coarse-grained regions to fine-grained regions. Results show that GD has an average improvement of 24.6% in Mean Absolute Percentage Error over alternative downscaling methods (i.e., the areal-weighted method and machine learning models) across datasets with different spatial scales and in various regions. Using simple assumptions, GD enables accurate downscaling of spatial interactions, making it applicable to a wide range of fields, including human mobility, transportation, and trade.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信