{"title":"室温脉冲激光沉积制备的金属/Nb:SrTiO3 肖特基触点中的电阻开关抑制作用","authors":"R Buzio and A Gerbi","doi":"10.1088/1361-6463/ad5c77","DOIUrl":null,"url":null,"abstract":"Deepening the understanding of interface-type resistive switching (RS) in metal/oxide heterojunctions is a key step for the development of high-performance memristors and Schottky rectifiers. In this study, we address the role of metallization technique by fabricating prototypical metal/Nb-doped SrTiO3 (M/NSTO) Schottky contacts via pulsed laser deposition (PLD). Ultrathin Pt and Au electrodes are deposited by PLD onto single-crystal (001)-terminated NSTO substrates and interfacial transport is characterized by conventional macroscale methods and nanoscale Ballistic Electron Emission Microscopy. We show that PLD metallization gives Schottky contacts with highly reversible current-voltage characteristics under cyclic polarization. Room-temperature (RT) transport is governed by thermionic emission with Schottky barrier height , and ideality factors as small as and . RS remains almost completely suppressed upon imposing broad variations of the Nb doping and of the external stimuli (polarization bias, working temperature, ambient air exposure). At the nanoscale, we find that both systems display high spatial homogeneity of ( ), which is only partially affected by the NSTO mixed termination ( ). Experimental evidences and theoretical arguments—based on a metal-insulator-semiconductor description of the M/NSTO—indicate that the PLD metallization mitigates interfacial layer effects responsible for RS. This occurs thanks to the reduction of the interfacial layer thickness and to the creation of an effective barrier against the permeation of ambient gas species affecting charge trapping and redox reactions. This description allows to rationalize interfacial aging effects, observed upon several-months-exposure to ambient air, in terms of a slow interfacial re-oxidation. Our work contributes to the fundamental understanding of interface-type RS and demonstrates that RT PLD offers a viable platform for the realization of robust, RS-free NSTO-based Schottky contacts.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistive switching suppression in metal/Nb:SrTiO3 Schottky contacts prepared by room-temperature pulsed laser deposition\",\"authors\":\"R Buzio and A Gerbi\",\"doi\":\"10.1088/1361-6463/ad5c77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deepening the understanding of interface-type resistive switching (RS) in metal/oxide heterojunctions is a key step for the development of high-performance memristors and Schottky rectifiers. In this study, we address the role of metallization technique by fabricating prototypical metal/Nb-doped SrTiO3 (M/NSTO) Schottky contacts via pulsed laser deposition (PLD). Ultrathin Pt and Au electrodes are deposited by PLD onto single-crystal (001)-terminated NSTO substrates and interfacial transport is characterized by conventional macroscale methods and nanoscale Ballistic Electron Emission Microscopy. We show that PLD metallization gives Schottky contacts with highly reversible current-voltage characteristics under cyclic polarization. Room-temperature (RT) transport is governed by thermionic emission with Schottky barrier height , and ideality factors as small as and . RS remains almost completely suppressed upon imposing broad variations of the Nb doping and of the external stimuli (polarization bias, working temperature, ambient air exposure). At the nanoscale, we find that both systems display high spatial homogeneity of ( ), which is only partially affected by the NSTO mixed termination ( ). Experimental evidences and theoretical arguments—based on a metal-insulator-semiconductor description of the M/NSTO—indicate that the PLD metallization mitigates interfacial layer effects responsible for RS. This occurs thanks to the reduction of the interfacial layer thickness and to the creation of an effective barrier against the permeation of ambient gas species affecting charge trapping and redox reactions. This description allows to rationalize interfacial aging effects, observed upon several-months-exposure to ambient air, in terms of a slow interfacial re-oxidation. Our work contributes to the fundamental understanding of interface-type RS and demonstrates that RT PLD offers a viable platform for the realization of robust, RS-free NSTO-based Schottky contacts.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad5c77\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad5c77","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Resistive switching suppression in metal/Nb:SrTiO3 Schottky contacts prepared by room-temperature pulsed laser deposition
Deepening the understanding of interface-type resistive switching (RS) in metal/oxide heterojunctions is a key step for the development of high-performance memristors and Schottky rectifiers. In this study, we address the role of metallization technique by fabricating prototypical metal/Nb-doped SrTiO3 (M/NSTO) Schottky contacts via pulsed laser deposition (PLD). Ultrathin Pt and Au electrodes are deposited by PLD onto single-crystal (001)-terminated NSTO substrates and interfacial transport is characterized by conventional macroscale methods and nanoscale Ballistic Electron Emission Microscopy. We show that PLD metallization gives Schottky contacts with highly reversible current-voltage characteristics under cyclic polarization. Room-temperature (RT) transport is governed by thermionic emission with Schottky barrier height , and ideality factors as small as and . RS remains almost completely suppressed upon imposing broad variations of the Nb doping and of the external stimuli (polarization bias, working temperature, ambient air exposure). At the nanoscale, we find that both systems display high spatial homogeneity of ( ), which is only partially affected by the NSTO mixed termination ( ). Experimental evidences and theoretical arguments—based on a metal-insulator-semiconductor description of the M/NSTO—indicate that the PLD metallization mitigates interfacial layer effects responsible for RS. This occurs thanks to the reduction of the interfacial layer thickness and to the creation of an effective barrier against the permeation of ambient gas species affecting charge trapping and redox reactions. This description allows to rationalize interfacial aging effects, observed upon several-months-exposure to ambient air, in terms of a slow interfacial re-oxidation. Our work contributes to the fundamental understanding of interface-type RS and demonstrates that RT PLD offers a viable platform for the realization of robust, RS-free NSTO-based Schottky contacts.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.