Jiayin Li, Desheng Zhou, Evgeny Rebrov, Xin Tang and Minkwan Kim
{"title":"正弦激励下弯曲角度对柔性电极 DBD 等离子体的影响","authors":"Jiayin Li, Desheng Zhou, Evgeny Rebrov, Xin Tang and Minkwan Kim","doi":"10.1088/1361-6463/ad58ee","DOIUrl":null,"url":null,"abstract":"There is a critical demand for sophisticated surface disinfection and sterilization devices accessible to the public by using cold atmospheric pressure air plasmas. A flexible printed circuit design of a dielectric barrier discharge reactor under non-bending and two bending configurations with an angle of 120° and 180° was studied. The characteristics of power consumption, the optical emission spectrum, dynamic process, electrode temperature and ozone concentration are evaluated. The non-bending configuration produces more O3, as compared to the bending configuration at the same applied voltage. The 180° configuration has a maximum concentration of excited species at the expense of higher electrode temperature. Both bending configurations demonstrated the propagation of filaments to bending axis where the continues luminescence is observed due to the high electrical field. The energy efficiency for plasma-generated reactive species reaches to 40% for non-bending configuration and decreases with the increase of bending angle. This research provides a new strategy for perspective into the plasma generated reactive species in biomedical and environmental applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of bending angle on a flexible electrode DBD plasma under sinusoidal excitation\",\"authors\":\"Jiayin Li, Desheng Zhou, Evgeny Rebrov, Xin Tang and Minkwan Kim\",\"doi\":\"10.1088/1361-6463/ad58ee\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a critical demand for sophisticated surface disinfection and sterilization devices accessible to the public by using cold atmospheric pressure air plasmas. A flexible printed circuit design of a dielectric barrier discharge reactor under non-bending and two bending configurations with an angle of 120° and 180° was studied. The characteristics of power consumption, the optical emission spectrum, dynamic process, electrode temperature and ozone concentration are evaluated. The non-bending configuration produces more O3, as compared to the bending configuration at the same applied voltage. The 180° configuration has a maximum concentration of excited species at the expense of higher electrode temperature. Both bending configurations demonstrated the propagation of filaments to bending axis where the continues luminescence is observed due to the high electrical field. The energy efficiency for plasma-generated reactive species reaches to 40% for non-bending configuration and decreases with the increase of bending angle. This research provides a new strategy for perspective into the plasma generated reactive species in biomedical and environmental applications.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad58ee\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad58ee","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
The effect of bending angle on a flexible electrode DBD plasma under sinusoidal excitation
There is a critical demand for sophisticated surface disinfection and sterilization devices accessible to the public by using cold atmospheric pressure air plasmas. A flexible printed circuit design of a dielectric barrier discharge reactor under non-bending and two bending configurations with an angle of 120° and 180° was studied. The characteristics of power consumption, the optical emission spectrum, dynamic process, electrode temperature and ozone concentration are evaluated. The non-bending configuration produces more O3, as compared to the bending configuration at the same applied voltage. The 180° configuration has a maximum concentration of excited species at the expense of higher electrode temperature. Both bending configurations demonstrated the propagation of filaments to bending axis where the continues luminescence is observed due to the high electrical field. The energy efficiency for plasma-generated reactive species reaches to 40% for non-bending configuration and decreases with the increase of bending angle. This research provides a new strategy for perspective into the plasma generated reactive species in biomedical and environmental applications.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.