{"title":"照明器基于图像的照明编辑,实现室内场景协调","authors":"Zhongyun Bao, Gang Fu, Zipei Chen, Chunxia Xiao","doi":"10.1007/s41095-023-0397-6","DOIUrl":null,"url":null,"abstract":"<p>Illumination harmonization is an important but challenging task that aims to achieve illumination compatibility between the foreground and background under different illumination conditions. Most current studies mainly focus on achieving seamless integration between the appearance (illumination or visual style) of the foreground object itself and the background scene or producing the foreground shadow. They rarely considered global illumination consistency (i.e., the illumination and shadow of the foreground object). In our work, we introduce “Illuminator”, an image-based illumination editing technique. This method aims to achieve more realistic global illumination harmonization, ensuring consistent illumination and plausible shadows in complex indoor environments. The Illuminator contains a shadow residual generation branch and an object illumination transfer branch. The shadow residual generation branch introduces a novel attention-aware graph convolutional mechanism to achieve reasonable foreground shadow generation. The object illumination transfer branch primarily transfers background illumination to the foreground region. In addition, we construct a real-world indoor illumination harmonization dataset called RIH, which consists of various foreground objects and background scenes captured under diverse illumination conditions for training and evaluating our Illuminator. Our comprehensive experiments, conducted on the RIH dataset and a collection of real-world everyday life photos, validate the effectiveness of our method.\n</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"12 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Illuminator: Image-based illumination editing for indoor scene harmonization\",\"authors\":\"Zhongyun Bao, Gang Fu, Zipei Chen, Chunxia Xiao\",\"doi\":\"10.1007/s41095-023-0397-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Illumination harmonization is an important but challenging task that aims to achieve illumination compatibility between the foreground and background under different illumination conditions. Most current studies mainly focus on achieving seamless integration between the appearance (illumination or visual style) of the foreground object itself and the background scene or producing the foreground shadow. They rarely considered global illumination consistency (i.e., the illumination and shadow of the foreground object). In our work, we introduce “Illuminator”, an image-based illumination editing technique. This method aims to achieve more realistic global illumination harmonization, ensuring consistent illumination and plausible shadows in complex indoor environments. The Illuminator contains a shadow residual generation branch and an object illumination transfer branch. The shadow residual generation branch introduces a novel attention-aware graph convolutional mechanism to achieve reasonable foreground shadow generation. The object illumination transfer branch primarily transfers background illumination to the foreground region. In addition, we construct a real-world indoor illumination harmonization dataset called RIH, which consists of various foreground objects and background scenes captured under diverse illumination conditions for training and evaluating our Illuminator. Our comprehensive experiments, conducted on the RIH dataset and a collection of real-world everyday life photos, validate the effectiveness of our method.\\n</p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-023-0397-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-023-0397-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Illuminator: Image-based illumination editing for indoor scene harmonization
Illumination harmonization is an important but challenging task that aims to achieve illumination compatibility between the foreground and background under different illumination conditions. Most current studies mainly focus on achieving seamless integration between the appearance (illumination or visual style) of the foreground object itself and the background scene or producing the foreground shadow. They rarely considered global illumination consistency (i.e., the illumination and shadow of the foreground object). In our work, we introduce “Illuminator”, an image-based illumination editing technique. This method aims to achieve more realistic global illumination harmonization, ensuring consistent illumination and plausible shadows in complex indoor environments. The Illuminator contains a shadow residual generation branch and an object illumination transfer branch. The shadow residual generation branch introduces a novel attention-aware graph convolutional mechanism to achieve reasonable foreground shadow generation. The object illumination transfer branch primarily transfers background illumination to the foreground region. In addition, we construct a real-world indoor illumination harmonization dataset called RIH, which consists of various foreground objects and background scenes captured under diverse illumination conditions for training and evaluating our Illuminator. Our comprehensive experiments, conducted on the RIH dataset and a collection of real-world everyday life photos, validate the effectiveness of our method.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.