几种灰度入射度完全相关测定的等价类

IF 3.2 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yong Wei, Shasha Xi
{"title":"几种灰度入射度完全相关测定的等价类","authors":"Yong Wei, Shasha Xi","doi":"10.1108/gs-12-2023-0119","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper sets out to solve a common and crucial fundamental theoretical problem of gray incidence cluster analysis: to <span><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mo>[</mml:mo><mml:mi>X</mml:mi><mml:mo>]</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mi>X</mml:mi><mml:mo>|</mml:mo><mml:mi>ρ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>X</mml:mi><mml:mo>,</mml:mo><mml:mi>Y</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:msub><mml:mi>ε</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>}</mml:mo></mml:mrow></mml:math></span> constitute an approximate classification, it must first be proven that <span><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mo>[</mml:mo><mml:mi>X</mml:mi><mml:mo>]</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mi>X</mml:mi><mml:mo>|</mml:mo><mml:mi>ρ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>X</mml:mi><mml:mo>,</mml:mo><mml:mi>Y</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>}</mml:mo></mml:mrow></mml:math></span> constitutes a rigorous classification.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This paper does not study the concrete expressions of various incidence degrees but rather the perfect correlation essence of such incidence degrees, that is, sufficient and necessary conditions.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>For any order difference incidence degree, the similarity incidence degree, the direct proportion incidence degree, the parallel incidence degree and the nearness incidence degree, it is proven that the perfect correlation relation is an equivalence relation. The set composed of all sequences <em>Y</em> that are equivalent to sequences <em>X</em> is studied, that is, the equivalence class of <em>X</em>. The structure and mutual relations of these equivalence classes are discussed, and the topological homeomorphism concept of incidence degree is introduced. The conclusion is obtained that the equivalence classes of the two incidence degrees must be the same when the topological homeomorphism is obtained.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>In this paper, only the perfect correlation relation of any order difference incidence degree, the similarity incidence degree, the direct proportion incidence degree, the parallel incidence degree and the nearness incidence degree are studied as equivalent relations.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Not only are the research results of several incidence degrees involved in this paper original but also many other effective incidence degrees have not done this basic research, so this paper opens up a research direction with theoretical significance.</p><!--/ Abstract__block -->","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"40 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalence class of complete correlation determination of several gray incidence degrees\",\"authors\":\"Yong Wei, Shasha Xi\",\"doi\":\"10.1108/gs-12-2023-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper sets out to solve a common and crucial fundamental theoretical problem of gray incidence cluster analysis: to <span><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mo>[</mml:mo><mml:mi>X</mml:mi><mml:mo>]</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mi>X</mml:mi><mml:mo>|</mml:mo><mml:mi>ρ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>X</mml:mi><mml:mo>,</mml:mo><mml:mi>Y</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:msub><mml:mi>ε</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>}</mml:mo></mml:mrow></mml:math></span> constitute an approximate classification, it must first be proven that <span><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mo>[</mml:mo><mml:mi>X</mml:mi><mml:mo>]</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mi>X</mml:mi><mml:mo>|</mml:mo><mml:mi>ρ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>X</mml:mi><mml:mo>,</mml:mo><mml:mi>Y</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>}</mml:mo></mml:mrow></mml:math></span> constitutes a rigorous classification.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This paper does not study the concrete expressions of various incidence degrees but rather the perfect correlation essence of such incidence degrees, that is, sufficient and necessary conditions.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>For any order difference incidence degree, the similarity incidence degree, the direct proportion incidence degree, the parallel incidence degree and the nearness incidence degree, it is proven that the perfect correlation relation is an equivalence relation. The set composed of all sequences <em>Y</em> that are equivalent to sequences <em>X</em> is studied, that is, the equivalence class of <em>X</em>. The structure and mutual relations of these equivalence classes are discussed, and the topological homeomorphism concept of incidence degree is introduced. The conclusion is obtained that the equivalence classes of the two incidence degrees must be the same when the topological homeomorphism is obtained.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>In this paper, only the perfect correlation relation of any order difference incidence degree, the similarity incidence degree, the direct proportion incidence degree, the parallel incidence degree and the nearness incidence degree are studied as equivalent relations.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Not only are the research results of several incidence degrees involved in this paper original but also many other effective incidence degrees have not done this basic research, so this paper opens up a research direction with theoretical significance.</p><!--/ Abstract__block -->\",\"PeriodicalId\":48597,\"journal\":{\"name\":\"Grey Systems-Theory and Application\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grey Systems-Theory and Application\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/gs-12-2023-0119\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grey Systems-Theory and Application","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/gs-12-2023-0119","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的本文旨在解决灰色入射聚类分析中一个普遍而关键的基本理论问题:要使[X]={X|ρ(X,Y)≥1-ε0}构成近似分类,必须首先证明[X]={X|ρ(X,Y)=1}构成严格分类。设计/方法/途径本文不研究各种入射角度的具体表达式,而是研究这些入射角度的完全相关本质,即充分条件和必要条件。讨论了这些等价类的结构和相互关系,并引入了入射度的拓扑同构概念。研究的局限性/意义本文只把任意阶差入射角度的完全相关关系、相似入射角度、直接比例入射角度、平行入射角度和近似入射角度作为等价关系来研究。独创性/价值本文所涉及的几个入射角度的研究成果不仅具有独创性,而且许多其他有效入射角度也没有做过这方面的基础研究,因此本文开辟了一个具有理论意义的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivalence class of complete correlation determination of several gray incidence degrees

Purpose

This paper sets out to solve a common and crucial fundamental theoretical problem of gray incidence cluster analysis: to [X]={X|ρ(X,Y)1ε0} constitute an approximate classification, it must first be proven that [X]={X|ρ(X,Y)=1} constitutes a rigorous classification.

Design/methodology/approach

This paper does not study the concrete expressions of various incidence degrees but rather the perfect correlation essence of such incidence degrees, that is, sufficient and necessary conditions.

Findings

For any order difference incidence degree, the similarity incidence degree, the direct proportion incidence degree, the parallel incidence degree and the nearness incidence degree, it is proven that the perfect correlation relation is an equivalence relation. The set composed of all sequences Y that are equivalent to sequences X is studied, that is, the equivalence class of X. The structure and mutual relations of these equivalence classes are discussed, and the topological homeomorphism concept of incidence degree is introduced. The conclusion is obtained that the equivalence classes of the two incidence degrees must be the same when the topological homeomorphism is obtained.

Research limitations/implications

In this paper, only the perfect correlation relation of any order difference incidence degree, the similarity incidence degree, the direct proportion incidence degree, the parallel incidence degree and the nearness incidence degree are studied as equivalent relations.

Originality/value

Not only are the research results of several incidence degrees involved in this paper original but also many other effective incidence degrees have not done this basic research, so this paper opens up a research direction with theoretical significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Grey Systems-Theory and Application
Grey Systems-Theory and Application MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.80
自引率
13.80%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信