Sahithi Kondaveeti, Pratik Patel, Felipe M. de Souza, Ram K. Gupta
{"title":"探索硬质聚氨酯泡沫中的豆油基多元醇和无卤阻燃剂的效果","authors":"Sahithi Kondaveeti, Pratik Patel, Felipe M. de Souza, Ram K. Gupta","doi":"10.1007/s10924-024-03323-4","DOIUrl":null,"url":null,"abstract":"<div><p>To address the increasing demand for sustainable biomaterials because of the excessive usage of fossil fuel and growing concerns with the environment, a novel biodegradable and environmentally friendly rigid polyurethane foam (RPUF) has been synthesized. These foams are derived from chemically modified soybean oil-based polyol (SBO-polyol) obtained through the formation of oxirane followed by the opening of the oxirane reaction. Polyurethane foam is generally used in construction, furniture, and automobile industries but is highly flammable and releases toxic fumes in combustion. In this study, an efficient synergistic effect of non-halogen flame-retardant (FR) melamine salt, 2-carboxyethyl(phenyl)phosphinic acid melamine salt (CMA) was synthesized from 2-carboxyethyl(phenyl)phosphinic acid (CEPP) and melamine (MA). Fourier transform infrared (FT-IR) spectroscopy characterized the chemical structure of CMA. Three different FRs, MA, melamine cyanurate (MC), and CMA were separately introduced in increasing quantities for the foam preparation to suppress the flame during combustion. The influence of these FRs on the thermal properties, flame retardancy, morphology, physical, and mechanical properties of the prepared RPUFs was studied through closed cell content, apparent density, compression test, horizontal burning test, thermogravimetric analysis (TGA), and gel permeation chromatography (GPC), scanning electron microscopy (SEM). The addition of 28.56 wt% of MA (MA-15), MC (MC-15), and CMA (CMA-15) presented a burning time of 10.1 s with weight loss of 5.34% and 28.4 s with 13.02% and 15.25 s with 8%, respectively. The findings demonstrated that all three FRs gave RPUF good FR properties.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Soybean Oil-Based Polyol and the Effect of Non-halogenated Flame Retardants in Rigid Polyurethane Foam\",\"authors\":\"Sahithi Kondaveeti, Pratik Patel, Felipe M. de Souza, Ram K. Gupta\",\"doi\":\"10.1007/s10924-024-03323-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the increasing demand for sustainable biomaterials because of the excessive usage of fossil fuel and growing concerns with the environment, a novel biodegradable and environmentally friendly rigid polyurethane foam (RPUF) has been synthesized. These foams are derived from chemically modified soybean oil-based polyol (SBO-polyol) obtained through the formation of oxirane followed by the opening of the oxirane reaction. Polyurethane foam is generally used in construction, furniture, and automobile industries but is highly flammable and releases toxic fumes in combustion. In this study, an efficient synergistic effect of non-halogen flame-retardant (FR) melamine salt, 2-carboxyethyl(phenyl)phosphinic acid melamine salt (CMA) was synthesized from 2-carboxyethyl(phenyl)phosphinic acid (CEPP) and melamine (MA). Fourier transform infrared (FT-IR) spectroscopy characterized the chemical structure of CMA. Three different FRs, MA, melamine cyanurate (MC), and CMA were separately introduced in increasing quantities for the foam preparation to suppress the flame during combustion. The influence of these FRs on the thermal properties, flame retardancy, morphology, physical, and mechanical properties of the prepared RPUFs was studied through closed cell content, apparent density, compression test, horizontal burning test, thermogravimetric analysis (TGA), and gel permeation chromatography (GPC), scanning electron microscopy (SEM). The addition of 28.56 wt% of MA (MA-15), MC (MC-15), and CMA (CMA-15) presented a burning time of 10.1 s with weight loss of 5.34% and 28.4 s with 13.02% and 15.25 s with 8%, respectively. The findings demonstrated that all three FRs gave RPUF good FR properties.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03323-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03323-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Exploring Soybean Oil-Based Polyol and the Effect of Non-halogenated Flame Retardants in Rigid Polyurethane Foam
To address the increasing demand for sustainable biomaterials because of the excessive usage of fossil fuel and growing concerns with the environment, a novel biodegradable and environmentally friendly rigid polyurethane foam (RPUF) has been synthesized. These foams are derived from chemically modified soybean oil-based polyol (SBO-polyol) obtained through the formation of oxirane followed by the opening of the oxirane reaction. Polyurethane foam is generally used in construction, furniture, and automobile industries but is highly flammable and releases toxic fumes in combustion. In this study, an efficient synergistic effect of non-halogen flame-retardant (FR) melamine salt, 2-carboxyethyl(phenyl)phosphinic acid melamine salt (CMA) was synthesized from 2-carboxyethyl(phenyl)phosphinic acid (CEPP) and melamine (MA). Fourier transform infrared (FT-IR) spectroscopy characterized the chemical structure of CMA. Three different FRs, MA, melamine cyanurate (MC), and CMA were separately introduced in increasing quantities for the foam preparation to suppress the flame during combustion. The influence of these FRs on the thermal properties, flame retardancy, morphology, physical, and mechanical properties of the prepared RPUFs was studied through closed cell content, apparent density, compression test, horizontal burning test, thermogravimetric analysis (TGA), and gel permeation chromatography (GPC), scanning electron microscopy (SEM). The addition of 28.56 wt% of MA (MA-15), MC (MC-15), and CMA (CMA-15) presented a burning time of 10.1 s with weight loss of 5.34% and 28.4 s with 13.02% and 15.25 s with 8%, respectively. The findings demonstrated that all three FRs gave RPUF good FR properties.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.