关于单位正方形中随机点集的双色直线交叉数的说明

IF 0.6 3区 数学 Q3 MATHEMATICS
S. Cabello, É Czabarka, R. Fabila-Monroy, Y. Higashikawa, R. Seidel, L. Székely, J. Tkadlec, A. Wesolek
{"title":"关于单位正方形中随机点集的双色直线交叉数的说明","authors":"S. Cabello,&nbsp;É Czabarka,&nbsp;R. Fabila-Monroy,&nbsp;Y. Higashikawa,&nbsp;R. Seidel,&nbsp;L. Székely,&nbsp;J. Tkadlec,&nbsp;A. Wesolek","doi":"10.1007/s10474-024-01436-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(S\\)</span> be a set of four points chosen independently, uniformly at random from a square. Join every pair of points of <span>\\(S\\)</span> with a straight line segment. Color these edges red if they have positive slope and blue, otherwise. We show that the probability that <span>\\(S\\)</span> defines a pair of crossing edges of the same color is equal to <span>\\(1/4\\)</span>. This is connected to a recent result of Aichholzer et al. [1] who showed that by 2-colouring the edges of a geometric graph and counting monochromatic crossings instead of crossings, the number of crossings can be more than halved. \nOur result shows that for the described random drawings, there is a coloring of the edges such that the number of monochromatic crossings is in expectation <span>\\(\\frac{1}{2}-\\frac{7}{50}\\)</span> of the total number of crossings.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 1","pages":"214 - 226"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-024-01436-9.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on the 2-colored rectilinear crossing number of random point sets in the unit square\",\"authors\":\"S. Cabello,&nbsp;É Czabarka,&nbsp;R. Fabila-Monroy,&nbsp;Y. Higashikawa,&nbsp;R. Seidel,&nbsp;L. Székely,&nbsp;J. Tkadlec,&nbsp;A. Wesolek\",\"doi\":\"10.1007/s10474-024-01436-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(S\\\\)</span> be a set of four points chosen independently, uniformly at random from a square. Join every pair of points of <span>\\\\(S\\\\)</span> with a straight line segment. Color these edges red if they have positive slope and blue, otherwise. We show that the probability that <span>\\\\(S\\\\)</span> defines a pair of crossing edges of the same color is equal to <span>\\\\(1/4\\\\)</span>. This is connected to a recent result of Aichholzer et al. [1] who showed that by 2-colouring the edges of a geometric graph and counting monochromatic crossings instead of crossings, the number of crossings can be more than halved. \\nOur result shows that for the described random drawings, there is a coloring of the edges such that the number of monochromatic crossings is in expectation <span>\\\\(\\\\frac{1}{2}-\\\\frac{7}{50}\\\\)</span> of the total number of crossings.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"173 1\",\"pages\":\"214 - 226\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10474-024-01436-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01436-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01436-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(S\) 是一组从正方形中独立、均匀地随机选择的四个点。用一条直线连接 \(S\) 的每一对点。如果这些边的斜率为正,则用红色标出,否则用蓝色标出。我们证明了 \(S\) 定义了一对相同颜色的交叉边的概率等于 \(1/4\)。这与 Aichholzer 等人最近的一个结果[1]有关,他们证明了通过给几何图形的边缘涂上 2 种颜色并计算单色交叉而不是交叉,交叉的数量可以减少一半以上。我们的结果表明,对于所描述的随机图,存在一种边缘着色方法,使得单色交叉的数量是总交叉数量的期望值(\frac{1}{2}-\frac{7}{50}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the 2-colored rectilinear crossing number of random point sets in the unit square

Let \(S\) be a set of four points chosen independently, uniformly at random from a square. Join every pair of points of \(S\) with a straight line segment. Color these edges red if they have positive slope and blue, otherwise. We show that the probability that \(S\) defines a pair of crossing edges of the same color is equal to \(1/4\). This is connected to a recent result of Aichholzer et al. [1] who showed that by 2-colouring the edges of a geometric graph and counting monochromatic crossings instead of crossings, the number of crossings can be more than halved. Our result shows that for the described random drawings, there is a coloring of the edges such that the number of monochromatic crossings is in expectation \(\frac{1}{2}-\frac{7}{50}\) of the total number of crossings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信