通过光学可及线性起爆管中的化学发光成像估算起爆单元尺寸

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Brandon M. Ng, Eugene N. A. Hoffman, Daniel I. Pineda, Christopher S. Combs
{"title":"通过光学可及线性起爆管中的化学发光成像估算起爆单元尺寸","authors":"Brandon M. Ng,&nbsp;Eugene N. A. Hoffman,&nbsp;Daniel I. Pineda,&nbsp;Christopher S. Combs","doi":"10.1007/s00348-024-03844-7","DOIUrl":null,"url":null,"abstract":"<div><p>An optically based experimental approach for estimating detonation cell size of premixed gas phase fuel–oxidizer mixtures in an optically accessible linear detonation tube is presented. Detonation wave fronts propagating through undiluted near-stoichiometric ethylene–oxygen mixtures in the circular detonation tube were visualized and recorded using CH* chemiluminescence imaging near 430 nm at 100 kHz for initial mixture pressures up to 22 kPa. The chemiluminescence imaging, coupled with high-speed videography, is shown to capture cellular detonation structures as small as 1.6 mm in width. The measured cell sizes increase as the initial fill pressure decreases, corroborating well-established relationships between detonation cell sizes and initial reactant pressures. The optically based method is validated against conventional soot foil measurements performed simultaneously with multiple detonations at various initial fill conditions. Both chemiluminescence images and soot foil measurements are compared to previously published cell size trends for undiluted fuel–oxygen detonations, demonstrating reasonable agreement with the established methods. Paired with the optically accessible detonation channel, the high-speed chemiluminescence imaging technique offers a passive estimation of detonation cell size for the range of conditions investigated with a faster experimental turnaround time relative to conventional methods.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detonation cell size estimation via chemiluminescence imaging in an optically accessible linear detonation tube\",\"authors\":\"Brandon M. Ng,&nbsp;Eugene N. A. Hoffman,&nbsp;Daniel I. Pineda,&nbsp;Christopher S. Combs\",\"doi\":\"10.1007/s00348-024-03844-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An optically based experimental approach for estimating detonation cell size of premixed gas phase fuel–oxidizer mixtures in an optically accessible linear detonation tube is presented. Detonation wave fronts propagating through undiluted near-stoichiometric ethylene–oxygen mixtures in the circular detonation tube were visualized and recorded using CH* chemiluminescence imaging near 430 nm at 100 kHz for initial mixture pressures up to 22 kPa. The chemiluminescence imaging, coupled with high-speed videography, is shown to capture cellular detonation structures as small as 1.6 mm in width. The measured cell sizes increase as the initial fill pressure decreases, corroborating well-established relationships between detonation cell sizes and initial reactant pressures. The optically based method is validated against conventional soot foil measurements performed simultaneously with multiple detonations at various initial fill conditions. Both chemiluminescence images and soot foil measurements are compared to previously published cell size trends for undiluted fuel–oxygen detonations, demonstrating reasonable agreement with the established methods. Paired with the optically accessible detonation channel, the high-speed chemiluminescence imaging technique offers a passive estimation of detonation cell size for the range of conditions investigated with a faster experimental turnaround time relative to conventional methods.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"65 7\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03844-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03844-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于光学的实验方法,用于估算在光学可及的线性爆管中预混合气相燃料-氧化剂混合物的爆轰单元尺寸。在初始混合物压力高达 22 kPa 的情况下,在 100 kHz 频率下使用波长为 430 nm 附近的 CH* 化学发光成像技术对圆形爆管中通过未稀释的近原子比乙烯-氧气混合物传播的爆轰波前沿进行了观察和记录。化学发光成像与高速摄像相结合,可以捕捉到宽度小至 1.6 毫米的细胞引爆结构。测量到的细胞尺寸随着初始填充压力的降低而增大,这证实了爆轰细胞尺寸与初始反应物压力之间的既定关系。基于光学的方法与在不同初始填充条件下同时进行多次引爆的传统烟尘箔测量进行了验证。将化学发光图像和烟尘箔测量结果与之前公布的未稀释燃料-氧气爆轰的爆轰室尺寸趋势进行了比较,结果表明两者与既定方法基本一致。高速化学发光成像技术与光学可触及的起爆通道相配合,可对所研究条件范围内的起爆单元大小进行被动估计,与传统方法相比,实验周转时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detonation cell size estimation via chemiluminescence imaging in an optically accessible linear detonation tube

Detonation cell size estimation via chemiluminescence imaging in an optically accessible linear detonation tube

An optically based experimental approach for estimating detonation cell size of premixed gas phase fuel–oxidizer mixtures in an optically accessible linear detonation tube is presented. Detonation wave fronts propagating through undiluted near-stoichiometric ethylene–oxygen mixtures in the circular detonation tube were visualized and recorded using CH* chemiluminescence imaging near 430 nm at 100 kHz for initial mixture pressures up to 22 kPa. The chemiluminescence imaging, coupled with high-speed videography, is shown to capture cellular detonation structures as small as 1.6 mm in width. The measured cell sizes increase as the initial fill pressure decreases, corroborating well-established relationships between detonation cell sizes and initial reactant pressures. The optically based method is validated against conventional soot foil measurements performed simultaneously with multiple detonations at various initial fill conditions. Both chemiluminescence images and soot foil measurements are compared to previously published cell size trends for undiluted fuel–oxygen detonations, demonstrating reasonable agreement with the established methods. Paired with the optically accessible detonation channel, the high-speed chemiluminescence imaging technique offers a passive estimation of detonation cell size for the range of conditions investigated with a faster experimental turnaround time relative to conventional methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信