Maratbek T. Gabdullin, Assel Mukasheva, Dina Koishiyeva, Timur Umarov, Alibek Bissembayev, Ki-Sub Kim, Jeong Won Kang
{"title":"组织学图像上的自动癌核分割:深度学习方法的比较研究","authors":"Maratbek T. Gabdullin, Assel Mukasheva, Dina Koishiyeva, Timur Umarov, Alibek Bissembayev, Ki-Sub Kim, Jeong Won Kang","doi":"10.1007/s12257-024-00130-5","DOIUrl":null,"url":null,"abstract":"<p>Cancer is one of the most common health problems affecting individuals worldwide. In the field of biomedical engineering, one of the main methods for cancer diagnosis is the analysis of histological images of tissue structures and cell nuclei using artificial intelligence. Here, we compared the performance of 15 deep learning methods viz: UNet, Deep-UNet, UNet-CBAM, RA-UNet, SA-Unet and Nuclei-SegNet, UNet-VGG2016, UNet-Resnet-101, TransResUNet, Inception-UNet, Att-UNet++ , FF-UNet, Att-UNet, Res-UNet and a new model, DanNucNet, in pathological nuclei segmentation on tissue slices from different organs on five open datasets: MoNuSeg, CoNSeP, CryoNuSeg, Data Science Bowl, and NuInsSeg. Before training on the data, the pixel intensity and color distribution were analyzed, and different augmentation techniques were applied. The results showed that the UNet-based model with 34.57 million Deep-UNet parameters performed the best, outperforming all models in terms of the Dice coefficient from 3.13 to 22.91%. The implementation of Deep-UNet in this context provides a valuable tool for accurate extraction of cancer cell nuclei from histological images, which in turn will contribute to further developments in cancer pathology and digital histology.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic cancer nuclei segmentation on histological images: comparison study of deep learning methods\",\"authors\":\"Maratbek T. Gabdullin, Assel Mukasheva, Dina Koishiyeva, Timur Umarov, Alibek Bissembayev, Ki-Sub Kim, Jeong Won Kang\",\"doi\":\"10.1007/s12257-024-00130-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer is one of the most common health problems affecting individuals worldwide. In the field of biomedical engineering, one of the main methods for cancer diagnosis is the analysis of histological images of tissue structures and cell nuclei using artificial intelligence. Here, we compared the performance of 15 deep learning methods viz: UNet, Deep-UNet, UNet-CBAM, RA-UNet, SA-Unet and Nuclei-SegNet, UNet-VGG2016, UNet-Resnet-101, TransResUNet, Inception-UNet, Att-UNet++ , FF-UNet, Att-UNet, Res-UNet and a new model, DanNucNet, in pathological nuclei segmentation on tissue slices from different organs on five open datasets: MoNuSeg, CoNSeP, CryoNuSeg, Data Science Bowl, and NuInsSeg. Before training on the data, the pixel intensity and color distribution were analyzed, and different augmentation techniques were applied. The results showed that the UNet-based model with 34.57 million Deep-UNet parameters performed the best, outperforming all models in terms of the Dice coefficient from 3.13 to 22.91%. The implementation of Deep-UNet in this context provides a valuable tool for accurate extraction of cancer cell nuclei from histological images, which in turn will contribute to further developments in cancer pathology and digital histology.</p>\",\"PeriodicalId\":8936,\"journal\":{\"name\":\"Biotechnology and Bioprocess Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioprocess Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12257-024-00130-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00130-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Automatic cancer nuclei segmentation on histological images: comparison study of deep learning methods
Cancer is one of the most common health problems affecting individuals worldwide. In the field of biomedical engineering, one of the main methods for cancer diagnosis is the analysis of histological images of tissue structures and cell nuclei using artificial intelligence. Here, we compared the performance of 15 deep learning methods viz: UNet, Deep-UNet, UNet-CBAM, RA-UNet, SA-Unet and Nuclei-SegNet, UNet-VGG2016, UNet-Resnet-101, TransResUNet, Inception-UNet, Att-UNet++ , FF-UNet, Att-UNet, Res-UNet and a new model, DanNucNet, in pathological nuclei segmentation on tissue slices from different organs on five open datasets: MoNuSeg, CoNSeP, CryoNuSeg, Data Science Bowl, and NuInsSeg. Before training on the data, the pixel intensity and color distribution were analyzed, and different augmentation techniques were applied. The results showed that the UNet-based model with 34.57 million Deep-UNet parameters performed the best, outperforming all models in terms of the Dice coefficient from 3.13 to 22.91%. The implementation of Deep-UNet in this context provides a valuable tool for accurate extraction of cancer cell nuclei from histological images, which in turn will contribute to further developments in cancer pathology and digital histology.
期刊介绍:
Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.