具有投资组合约束和随机环境的稳健优化投资和消费策略

Len Patrick Dominic M. Garces, Yang Shen
{"title":"具有投资组合约束和随机环境的稳健优化投资和消费策略","authors":"Len Patrick Dominic M. Garces, Yang Shen","doi":"arxiv-2407.02831","DOIUrl":null,"url":null,"abstract":"We investigate a continuous-time investment-consumption problem with model\nuncertainty in a general diffusion-based market with random model coefficients.\nWe assume that a power utility investor is ambiguity-averse, with the\npreference to robustness captured by the homothetic multiplier robust\nspecification, and the investor's investment and consumption strategies are\nconstrained to closed convex sets. To solve this constrained robust control\nproblem, we employ the stochastic Hamilton-Jacobi-Bellman-Isaacs equations,\nbackward stochastic differential equations, and bounded mean oscillation\nmartingale theory. Furthermore, we show the investor incurs (non-negative)\nutility loss, i.e. the loss in welfare, if model uncertainty is ignored. When\nthe model coefficients are deterministic, we establish formally the\nrelationship between the investor's robustness preference and the robust\noptimal investment-consumption strategy and the value function, and the impact\nof investment and consumption constraints on the investor's robust optimal\ninvestment-consumption strategy and value function. Extensive numerical\nexperiments highlight the significant impact of ambiguity aversion, consumption\nand investment constraints, on the investor's robust optimal\ninvestment-consumption strategy, utility loss, and value function. Key findings\ninclude: 1) short-selling restriction always reduces the investor's utility\nloss when model uncertainty is ignored; 2) the effect of consumption\nconstraints on utility loss is more delicate and relies on the investor's risk\naversion level.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust optimal investment and consumption strategies with portfolio constraints and stochastic environment\",\"authors\":\"Len Patrick Dominic M. Garces, Yang Shen\",\"doi\":\"arxiv-2407.02831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a continuous-time investment-consumption problem with model\\nuncertainty in a general diffusion-based market with random model coefficients.\\nWe assume that a power utility investor is ambiguity-averse, with the\\npreference to robustness captured by the homothetic multiplier robust\\nspecification, and the investor's investment and consumption strategies are\\nconstrained to closed convex sets. To solve this constrained robust control\\nproblem, we employ the stochastic Hamilton-Jacobi-Bellman-Isaacs equations,\\nbackward stochastic differential equations, and bounded mean oscillation\\nmartingale theory. Furthermore, we show the investor incurs (non-negative)\\nutility loss, i.e. the loss in welfare, if model uncertainty is ignored. When\\nthe model coefficients are deterministic, we establish formally the\\nrelationship between the investor's robustness preference and the robust\\noptimal investment-consumption strategy and the value function, and the impact\\nof investment and consumption constraints on the investor's robust optimal\\ninvestment-consumption strategy and value function. Extensive numerical\\nexperiments highlight the significant impact of ambiguity aversion, consumption\\nand investment constraints, on the investor's robust optimal\\ninvestment-consumption strategy, utility loss, and value function. Key findings\\ninclude: 1) short-selling restriction always reduces the investor's utility\\nloss when model uncertainty is ignored; 2) the effect of consumption\\nconstraints on utility loss is more delicate and relies on the investor's risk\\naversion level.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在一个具有随机模型系数的基于扩散的一般市场中,一个具有模型不确定性的连续时间投资-消费问题。我们假定一个功率效用投资者是模糊规避型的,对稳健性的偏好由同调乘数稳健规范来捕捉,投资者的投资和消费策略受限于封闭的凸集。为了解决这个约束稳健控制问题,我们采用了随机汉密尔顿-雅各比-贝勒曼-伊萨克斯方程、后向随机微分方程和有界均值振荡鞅理论。此外,我们还证明了如果忽略模型的不确定性,投资者会产生(非负)效用损失,即福利损失。当模型系数确定时,我们正式建立了投资者的稳健性偏好与稳健性最优投资-消费策略和价值函数之间的关系,以及投资和消费约束对投资者稳健性最优投资-消费策略和价值函数的影响。大量的数值实验强调了模糊厌恶、消费和投资约束对投资者稳健最优投资-消费策略、效用损失和价值函数的重大影响。主要发现包括1)当模型的不确定性被忽略时,卖空限制总是会减少投资者的效用损失;2)消费约束对效用损失的影响更为微妙,并且依赖于投资者的风险厌恶水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust optimal investment and consumption strategies with portfolio constraints and stochastic environment
We investigate a continuous-time investment-consumption problem with model uncertainty in a general diffusion-based market with random model coefficients. We assume that a power utility investor is ambiguity-averse, with the preference to robustness captured by the homothetic multiplier robust specification, and the investor's investment and consumption strategies are constrained to closed convex sets. To solve this constrained robust control problem, we employ the stochastic Hamilton-Jacobi-Bellman-Isaacs equations, backward stochastic differential equations, and bounded mean oscillation martingale theory. Furthermore, we show the investor incurs (non-negative) utility loss, i.e. the loss in welfare, if model uncertainty is ignored. When the model coefficients are deterministic, we establish formally the relationship between the investor's robustness preference and the robust optimal investment-consumption strategy and the value function, and the impact of investment and consumption constraints on the investor's robust optimal investment-consumption strategy and value function. Extensive numerical experiments highlight the significant impact of ambiguity aversion, consumption and investment constraints, on the investor's robust optimal investment-consumption strategy, utility loss, and value function. Key findings include: 1) short-selling restriction always reduces the investor's utility loss when model uncertainty is ignored; 2) the effect of consumption constraints on utility loss is more delicate and relies on the investor's risk aversion level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信