自动量化颞叶外侧和内侧容积,提高早期阿尔茨海默病诊断水平

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Marufjon Salokhiddinov, Dharmesh Singh, Akash Gandhamal, Dileep Kumar, Elisabeth Stamou, Munojat Ismailova, Gulnora Rakhimbaeva, Dilshod Tolibov
{"title":"自动量化颞叶外侧和内侧容积,提高早期阿尔茨海默病诊断水平","authors":"Marufjon Salokhiddinov,&nbsp;Dharmesh Singh,&nbsp;Akash Gandhamal,&nbsp;Dileep Kumar,&nbsp;Elisabeth Stamou,&nbsp;Munojat Ismailova,&nbsp;Gulnora Rakhimbaeva,&nbsp;Dilshod Tolibov","doi":"10.1007/s00723-024-01667-7","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study was to evaluate the importance of automated lateral and medial temporal volume measurement technique for the early diagnosis of Alzheimer's disease (AD). A cross-sectional T1-weighted magnetic resonance image was obtained from 39 healthy adults and 39 patients with mild AD. The study demonstrates significant volume loss in the lateral temporal lobe (LTL) and medial temporal lobe (MTL) regions of the brain in early cases of AD, suggesting that volume loss could be used as a viable biomarker for mild AD diagnosis. Using a deep learning-based auto-segmentation network (CINet), the study accurately estimates the volumes of various LTL and MTL brain regions. Notably, higher volume loss is observed in the left MTL and LTL regions compared to the right, indicating an asymmetric impact in mild AD. The study underscores the significance of automated technique for AD diagnosis and monitoring disease progression, contributing valuable insights for potential early interventions.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 7","pages":"719 - 736"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00723-024-01667-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated Quantification of Lateral and Medial Temporal Lobe Volumes for Improved Diagnosis of Early Alzheimer’s Disease\",\"authors\":\"Marufjon Salokhiddinov,&nbsp;Dharmesh Singh,&nbsp;Akash Gandhamal,&nbsp;Dileep Kumar,&nbsp;Elisabeth Stamou,&nbsp;Munojat Ismailova,&nbsp;Gulnora Rakhimbaeva,&nbsp;Dilshod Tolibov\",\"doi\":\"10.1007/s00723-024-01667-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this study was to evaluate the importance of automated lateral and medial temporal volume measurement technique for the early diagnosis of Alzheimer's disease (AD). A cross-sectional T1-weighted magnetic resonance image was obtained from 39 healthy adults and 39 patients with mild AD. The study demonstrates significant volume loss in the lateral temporal lobe (LTL) and medial temporal lobe (MTL) regions of the brain in early cases of AD, suggesting that volume loss could be used as a viable biomarker for mild AD diagnosis. Using a deep learning-based auto-segmentation network (CINet), the study accurately estimates the volumes of various LTL and MTL brain regions. Notably, higher volume loss is observed in the left MTL and LTL regions compared to the right, indicating an asymmetric impact in mild AD. The study underscores the significance of automated technique for AD diagnosis and monitoring disease progression, contributing valuable insights for potential early interventions.</p></div>\",\"PeriodicalId\":469,\"journal\":{\"name\":\"Applied Magnetic Resonance\",\"volume\":\"55 7\",\"pages\":\"719 - 736\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00723-024-01667-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Magnetic Resonance\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00723-024-01667-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01667-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是评估颞叶外侧和内侧容积自动测量技术对阿尔茨海默病(AD)早期诊断的重要性。研究人员采集了 39 名健康成人和 39 名轻度阿尔茨海默病患者的横断面 T1 加权磁共振图像。研究表明,在早期阿兹海默症病例中,大脑外侧颞叶(LTL)和内侧颞叶(MTL)区域的体积明显缩小,这表明体积缩小可作为诊断轻度阿兹海默症的可行生物标志物。该研究利用基于深度学习的自动分割网络(CINet),准确估算出了不同LTL和MTL脑区的体积。值得注意的是,与右侧相比,左侧 MTL 和 LTL 区域的体积损失更大,这表明轻度注意力缺失症的影响是不对称的。这项研究强调了自动化技术在诊断和监测AD疾病进展方面的重要意义,为潜在的早期干预措施提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated Quantification of Lateral and Medial Temporal Lobe Volumes for Improved Diagnosis of Early Alzheimer’s Disease

Automated Quantification of Lateral and Medial Temporal Lobe Volumes for Improved Diagnosis of Early Alzheimer’s Disease

The purpose of this study was to evaluate the importance of automated lateral and medial temporal volume measurement technique for the early diagnosis of Alzheimer's disease (AD). A cross-sectional T1-weighted magnetic resonance image was obtained from 39 healthy adults and 39 patients with mild AD. The study demonstrates significant volume loss in the lateral temporal lobe (LTL) and medial temporal lobe (MTL) regions of the brain in early cases of AD, suggesting that volume loss could be used as a viable biomarker for mild AD diagnosis. Using a deep learning-based auto-segmentation network (CINet), the study accurately estimates the volumes of various LTL and MTL brain regions. Notably, higher volume loss is observed in the left MTL and LTL regions compared to the right, indicating an asymmetric impact in mild AD. The study underscores the significance of automated technique for AD diagnosis and monitoring disease progression, contributing valuable insights for potential early interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Magnetic Resonance
Applied Magnetic Resonance 物理-光谱学
CiteScore
1.90
自引率
10.00%
发文量
59
审稿时长
2.3 months
期刊介绍: Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields. The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信