{"title":"γ-辐照对 NaF 晶体磁饱和状态下核磁自旋共振机制分离的影响","authors":"A. M. Rochev, V. M. Mikushev, E. V. Charnaya","doi":"10.1007/s00723-024-01675-7","DOIUrl":null,"url":null,"abstract":"<div><p>Studies were carried out on the effect of additional continuous magnetic saturation of the NMR line on nuclear spin relaxation in a NaF single crystal before and after γ-irradiation. The times of magnetization recovery after inversion were measured at room temperature using a Bruker Avance 400 pulse spectrometer. The magnetic saturation was obtained by exciting a long additional resonance pulse. Two main contributions to relaxation for quadrupole <sup>23</sup>Na nuclei, due to spin-phonon coupling in a regular crystalline lattice and due to magnetic centers, were separated by suppressing the latter contribution. γ-irradiation was shown to enhance spin relaxation, however, the magnetic saturation does not suppress the contribution of color centers. The times corresponding to <sup>23</sup>Na relaxation due to spin-phonon coupling in a regular lattice, due to magnetic centers and color centers were evaluated. It was shown that the rate of spin–lattice relaxation for dipole <sup>19</sup>F nuclei was not affected by magnetic saturation.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 8","pages":"819 - 826"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of γ-Irradiation on Separation of Nuclear Spin-Relaxation Mechanisms Under Magnetic Saturation in a NaF Crystal\",\"authors\":\"A. M. Rochev, V. M. Mikushev, E. V. Charnaya\",\"doi\":\"10.1007/s00723-024-01675-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studies were carried out on the effect of additional continuous magnetic saturation of the NMR line on nuclear spin relaxation in a NaF single crystal before and after γ-irradiation. The times of magnetization recovery after inversion were measured at room temperature using a Bruker Avance 400 pulse spectrometer. The magnetic saturation was obtained by exciting a long additional resonance pulse. Two main contributions to relaxation for quadrupole <sup>23</sup>Na nuclei, due to spin-phonon coupling in a regular crystalline lattice and due to magnetic centers, were separated by suppressing the latter contribution. γ-irradiation was shown to enhance spin relaxation, however, the magnetic saturation does not suppress the contribution of color centers. The times corresponding to <sup>23</sup>Na relaxation due to spin-phonon coupling in a regular lattice, due to magnetic centers and color centers were evaluated. It was shown that the rate of spin–lattice relaxation for dipole <sup>19</sup>F nuclei was not affected by magnetic saturation.</p></div>\",\"PeriodicalId\":469,\"journal\":{\"name\":\"Applied Magnetic Resonance\",\"volume\":\"55 8\",\"pages\":\"819 - 826\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Magnetic Resonance\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00723-024-01675-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01675-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Impact of γ-Irradiation on Separation of Nuclear Spin-Relaxation Mechanisms Under Magnetic Saturation in a NaF Crystal
Studies were carried out on the effect of additional continuous magnetic saturation of the NMR line on nuclear spin relaxation in a NaF single crystal before and after γ-irradiation. The times of magnetization recovery after inversion were measured at room temperature using a Bruker Avance 400 pulse spectrometer. The magnetic saturation was obtained by exciting a long additional resonance pulse. Two main contributions to relaxation for quadrupole 23Na nuclei, due to spin-phonon coupling in a regular crystalline lattice and due to magnetic centers, were separated by suppressing the latter contribution. γ-irradiation was shown to enhance spin relaxation, however, the magnetic saturation does not suppress the contribution of color centers. The times corresponding to 23Na relaxation due to spin-phonon coupling in a regular lattice, due to magnetic centers and color centers were evaluated. It was shown that the rate of spin–lattice relaxation for dipole 19F nuclei was not affected by magnetic saturation.
期刊介绍:
Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields.
The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.