高功率、高效 221 nm AlGaN 远紫外激光二极管

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Syeda Wageeha Shakir, Muhammad Usman, Usman Habib, Shazma Ali and Laraib Mustafa
{"title":"高功率、高效 221 nm AlGaN 远紫外激光二极管","authors":"Syeda Wageeha Shakir, Muhammad Usman, Usman Habib, Shazma Ali and Laraib Mustafa","doi":"10.1149/2162-8777/ad5a3b","DOIUrl":null,"url":null,"abstract":"The optical features of far ultraviolet laser diodes (UV LDs) with peak wavelength emission of 221 nm have been numerically analyzed. Global research teams are developing aluminum gallium nitride (AlGaN)-based farUV LDs on Sapphire and AlN substrates as an alternative to Mercury lamps for air-water purification, polymer curing, and bio-medical devices. In this study, the light output power, internal quantum efficiency, stimulated recombination rate curve, and optical gain curve of the compositionally graded p-cladding layer (p-CL) were studied and show significant improvements. Therefore, the optimized structure can reduce the overflow of electrons and increase the injection of holes. This approach proves to be an efficient method for enhancing farUV LDs’ overall performance when compared to the reference structure.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Power and High-Efficiency 221 nm AlGaN Far Ultraviolet Laser Diodes\",\"authors\":\"Syeda Wageeha Shakir, Muhammad Usman, Usman Habib, Shazma Ali and Laraib Mustafa\",\"doi\":\"10.1149/2162-8777/ad5a3b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical features of far ultraviolet laser diodes (UV LDs) with peak wavelength emission of 221 nm have been numerically analyzed. Global research teams are developing aluminum gallium nitride (AlGaN)-based farUV LDs on Sapphire and AlN substrates as an alternative to Mercury lamps for air-water purification, polymer curing, and bio-medical devices. In this study, the light output power, internal quantum efficiency, stimulated recombination rate curve, and optical gain curve of the compositionally graded p-cladding layer (p-CL) were studied and show significant improvements. Therefore, the optimized structure can reduce the overflow of electrons and increase the injection of holes. This approach proves to be an efficient method for enhancing farUV LDs’ overall performance when compared to the reference structure.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad5a3b\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad5a3b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对峰值发射波长为 221 nm 的远紫外激光二极管(UV LD)的光学特性进行了数值分析。全球研究团队正在蓝宝石和氮化铝基板上开发基于氮化铝镓(AlGaN)的远紫外激光二极管,以替代汞灯,用于空气-水净化、聚合物固化和生物医疗设备。本研究对成分分级 p-包层(p-CL)的光输出功率、内部量子效率、受激重组率曲线和光增益曲线进行了研究,结果表明其性能有了显著提高。因此,优化后的结构可以减少电子溢出,增加空穴注入。与参考结构相比,这种方法被证明是提高远紫外 LD 整体性能的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Power and High-Efficiency 221 nm AlGaN Far Ultraviolet Laser Diodes
The optical features of far ultraviolet laser diodes (UV LDs) with peak wavelength emission of 221 nm have been numerically analyzed. Global research teams are developing aluminum gallium nitride (AlGaN)-based farUV LDs on Sapphire and AlN substrates as an alternative to Mercury lamps for air-water purification, polymer curing, and bio-medical devices. In this study, the light output power, internal quantum efficiency, stimulated recombination rate curve, and optical gain curve of the compositionally graded p-cladding layer (p-CL) were studied and show significant improvements. Therefore, the optimized structure can reduce the overflow of electrons and increase the injection of holes. This approach proves to be an efficient method for enhancing farUV LDs’ overall performance when compared to the reference structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信