具有垂直剪切力的水平气流和具有向气流和向气流成分的普通型气流背景下的准地转涡旋的相似性

IF 1.3 4区 地球科学 Q4 OCEANOGRAPHY
V. V. Zhmur
{"title":"具有垂直剪切力的水平气流和具有向气流和向气流成分的普通型气流背景下的准地转涡旋的相似性","authors":"V. V. Zhmur","doi":"10.1134/s0001437024700012","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This article continues and generalizes the study “On the Similarity of Quasi-Geostrophic Vortices against the Background of Large-Scale Barotropic Currents” [6] (<i>Oceanology</i>, Zhmur, 2024, in print). In continuation of [6], a similar formulation is considered, but for other types of background currents. In the quasi-geostrophic description for small Rossby numbers, the problem of the evolution of an arbitrarily shaped liquid volume with homogeneous potential vorticity of all vortex core particles in an equidistant background flow—horizontal flow with vertical shear and equidistant flow with barotropic and baroclinic components—is presented. Ultimately, the problem boils down to an integrodifferential equation for the evolution of the vortex core boundary. The study of this equation in dimensionless form makes it possible to find a set of dimensionless parameters that determine the similarity condition of the studied vortices.</p>","PeriodicalId":54692,"journal":{"name":"Oceanology","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity of Quasi-Geostrophic Vortices Against the Background of Horizontal Currents with Vertical Shear and General-Type Currents with Barotropic and Baroclinic Components\",\"authors\":\"V. V. Zhmur\",\"doi\":\"10.1134/s0001437024700012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This article continues and generalizes the study “On the Similarity of Quasi-Geostrophic Vortices against the Background of Large-Scale Barotropic Currents” [6] (<i>Oceanology</i>, Zhmur, 2024, in print). In continuation of [6], a similar formulation is considered, but for other types of background currents. In the quasi-geostrophic description for small Rossby numbers, the problem of the evolution of an arbitrarily shaped liquid volume with homogeneous potential vorticity of all vortex core particles in an equidistant background flow—horizontal flow with vertical shear and equidistant flow with barotropic and baroclinic components—is presented. Ultimately, the problem boils down to an integrodifferential equation for the evolution of the vortex core boundary. The study of this equation in dimensionless form makes it possible to find a set of dimensionless parameters that determine the similarity condition of the studied vortices.</p>\",\"PeriodicalId\":54692,\"journal\":{\"name\":\"Oceanology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001437024700012\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001437024700012","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文是对 "论大尺度各向气流背景下准地转涡旋的相似性"[6](《海洋学》,Zhmur,2024 年,印刷版)研究的延续和概括。在继续[6]的研究中,考虑了类似的表述,但针对的是其他类型的背景流。在对小罗斯比数的准地转描述中,提出了一个任意形状的液体体积在等距背景流(具有垂直剪切力的水平流和具有向气压和向气压成分的等距流)中的演变问题,该液体体积的所有涡核粒子具有同质的潜在涡度。最终,问题归结为涡核边界演变的微分方程。通过对这个无量纲方程的研究,可以找到一组无量纲参数,这些参数决定了所研究涡旋的相似性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity of Quasi-Geostrophic Vortices Against the Background of Horizontal Currents with Vertical Shear and General-Type Currents with Barotropic and Baroclinic Components

Abstract

This article continues and generalizes the study “On the Similarity of Quasi-Geostrophic Vortices against the Background of Large-Scale Barotropic Currents” [6] (Oceanology, Zhmur, 2024, in print). In continuation of [6], a similar formulation is considered, but for other types of background currents. In the quasi-geostrophic description for small Rossby numbers, the problem of the evolution of an arbitrarily shaped liquid volume with homogeneous potential vorticity of all vortex core particles in an equidistant background flow—horizontal flow with vertical shear and equidistant flow with barotropic and baroclinic components—is presented. Ultimately, the problem boils down to an integrodifferential equation for the evolution of the vortex core boundary. The study of this equation in dimensionless form makes it possible to find a set of dimensionless parameters that determine the similarity condition of the studied vortices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oceanology
Oceanology 地学-海洋学
CiteScore
2.00
自引率
20.00%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Oceanology, founded in 1961, is the leading journal in all areas of the marine sciences. It publishes original papers in all fields of theoretical and experimental research in physical, chemical, biological, geological, and technical oceanology. The journal also offers reviews and information about conferences, symposia, cruises, and other events of interest to the oceanographic community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信