利用电流和自旋波在纳米带上实现可调谐的磁性 Skyrmion 运动:微磁研究

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Payal Bhattacharjee, Saswati Barman
{"title":"利用电流和自旋波在纳米带上实现可调谐的磁性 Skyrmion 运动:微磁研究","authors":"Payal Bhattacharjee,&nbsp;Saswati Barman","doi":"10.1007/s10948-024-06769-8","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, the concept of non-trivial topological protection and the nanoscale size of nanomagnetic particles constitute a major area of research. Due to topological protection stability, nanoscale size, and the requirement of low spin current density for motion, skyrmions have attracted great attention in next-generation spintronic devices as robust information carriers. We study the motion of an isolated magnetic skyrmion with induced interfacial Dzyaloshinskii-Moriya interaction (iDMI) instigated by spin waves and driven by spin current with variation in different parameters in a nanotrack of finite length using micromagnetic simulations. It is found that the magnetic skyrmion moves in the same direction as the direction of propagation of the spin waves. The skyrmion initially experiences an acceleration in its motion; thereafter, the velocity decreases exponentially. The motion of the magnetic skyrmion initiates as the momentum of the spin wave gets transferred to it. The motion of the magnetic skyrmion is found to be significantly dependent on the variation of parameters like frequency and amplitude of the incident spin waves, as well as the damping parameter and the strength of the applied spin-polarized current. The results obtained in this work could become useful to design skyrmion-based spintronic information-carrying and storage devices.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 8-10","pages":"1519 - 1527"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Magnetic Skyrmion Motion on a Nanostrip Using Current and Spin Waves: A Micromagnetic Study\",\"authors\":\"Payal Bhattacharjee,&nbsp;Saswati Barman\",\"doi\":\"10.1007/s10948-024-06769-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, the concept of non-trivial topological protection and the nanoscale size of nanomagnetic particles constitute a major area of research. Due to topological protection stability, nanoscale size, and the requirement of low spin current density for motion, skyrmions have attracted great attention in next-generation spintronic devices as robust information carriers. We study the motion of an isolated magnetic skyrmion with induced interfacial Dzyaloshinskii-Moriya interaction (iDMI) instigated by spin waves and driven by spin current with variation in different parameters in a nanotrack of finite length using micromagnetic simulations. It is found that the magnetic skyrmion moves in the same direction as the direction of propagation of the spin waves. The skyrmion initially experiences an acceleration in its motion; thereafter, the velocity decreases exponentially. The motion of the magnetic skyrmion initiates as the momentum of the spin wave gets transferred to it. The motion of the magnetic skyrmion is found to be significantly dependent on the variation of parameters like frequency and amplitude of the incident spin waves, as well as the damping parameter and the strength of the applied spin-polarized current. The results obtained in this work could become useful to design skyrmion-based spintronic information-carrying and storage devices.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"37 8-10\",\"pages\":\"1519 - 1527\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-024-06769-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06769-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如今,非三维拓扑保护概念和纳米级尺寸的纳米磁性粒子已成为一个重要的研究领域。由于拓扑保护的稳定性、纳米级尺寸以及运动对低自旋电流密度的要求,天磁子作为稳健的信息载体在下一代自旋电子器件中备受关注。我们利用微磁模拟研究了具有诱导界面 Dzyaloshinskii-Moriya 相互作用(iDMI)的孤立磁性 skyrmion 在自旋波的唆使下和自旋电流的驱动下,随不同参数的变化在有限长度纳米轨道中的运动。研究发现,磁性天幕的运动方向与自旋波的传播方向相同。磁性天幕在运动过程中最初会出现加速度,随后速度呈指数下降。磁性天幕的运动开始于自旋波的动量传递到它身上。研究发现,磁性天幕的运动在很大程度上取决于入射自旋波的频率和振幅等参数的变化,以及阻尼参数和外加自旋极化电流的强度。这项研究获得的结果将有助于设计基于天磁子的自旋电子信息携带和存储设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable Magnetic Skyrmion Motion on a Nanostrip Using Current and Spin Waves: A Micromagnetic Study

Tunable Magnetic Skyrmion Motion on a Nanostrip Using Current and Spin Waves: A Micromagnetic Study

Nowadays, the concept of non-trivial topological protection and the nanoscale size of nanomagnetic particles constitute a major area of research. Due to topological protection stability, nanoscale size, and the requirement of low spin current density for motion, skyrmions have attracted great attention in next-generation spintronic devices as robust information carriers. We study the motion of an isolated magnetic skyrmion with induced interfacial Dzyaloshinskii-Moriya interaction (iDMI) instigated by spin waves and driven by spin current with variation in different parameters in a nanotrack of finite length using micromagnetic simulations. It is found that the magnetic skyrmion moves in the same direction as the direction of propagation of the spin waves. The skyrmion initially experiences an acceleration in its motion; thereafter, the velocity decreases exponentially. The motion of the magnetic skyrmion initiates as the momentum of the spin wave gets transferred to it. The motion of the magnetic skyrmion is found to be significantly dependent on the variation of parameters like frequency and amplitude of the incident spin waves, as well as the damping parameter and the strength of the applied spin-polarized current. The results obtained in this work could become useful to design skyrmion-based spintronic information-carrying and storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信