I. A. Abramova, D. M. Demchev, E. V. Kharyutkina, E. N. Savenkova, I. A. Sudakow
{"title":"利用 U-Net 卷积神经网络及其修改来分割卫星光学图像中的苔原湖泊","authors":"I. A. Abramova, D. M. Demchev, E. V. Kharyutkina, E. N. Savenkova, I. A. Sudakow","doi":"10.1134/S1024856024700404","DOIUrl":null,"url":null,"abstract":"<p>Tundra lakes are an important indicator of climate change; therefore, the analysis of the dynamics of their size is of particular interest. This paper presents the results of using the U-Net convolutional neural network for tundra lakes segmentation in satellite optical images using Landsat data as an example. The comparative assessment of segmentation accuracy is performed for the original U-Net design and its modifications: U-Net++, Attention U-Net, and R2 U-Net, including with weights derived from a pretrained VGG16 network. The segmentation accuracy is assessed based on the results of manual mapping of tundra lakes in northern Siberia. It is shown that more recent U-Net modifications do not provide a practically significant gain in segmentation accuracy, but increase the computational costs. A configuration based on the classic U-Net gives the best result in most cases (the average Soerens coefficient IoU = 0.88). The technique suggested and the resulting estimates can be used in analysis of modern climate trends.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of the U-Net Convolutional Neural Network and Its Modifications for Segmentation of Tundra Lakes in Satellite Optical Images\",\"authors\":\"I. A. Abramova, D. M. Demchev, E. V. Kharyutkina, E. N. Savenkova, I. A. Sudakow\",\"doi\":\"10.1134/S1024856024700404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tundra lakes are an important indicator of climate change; therefore, the analysis of the dynamics of their size is of particular interest. This paper presents the results of using the U-Net convolutional neural network for tundra lakes segmentation in satellite optical images using Landsat data as an example. The comparative assessment of segmentation accuracy is performed for the original U-Net design and its modifications: U-Net++, Attention U-Net, and R2 U-Net, including with weights derived from a pretrained VGG16 network. The segmentation accuracy is assessed based on the results of manual mapping of tundra lakes in northern Siberia. It is shown that more recent U-Net modifications do not provide a practically significant gain in segmentation accuracy, but increase the computational costs. A configuration based on the classic U-Net gives the best result in most cases (the average Soerens coefficient IoU = 0.88). The technique suggested and the resulting estimates can be used in analysis of modern climate trends.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Utilization of the U-Net Convolutional Neural Network and Its Modifications for Segmentation of Tundra Lakes in Satellite Optical Images
Tundra lakes are an important indicator of climate change; therefore, the analysis of the dynamics of their size is of particular interest. This paper presents the results of using the U-Net convolutional neural network for tundra lakes segmentation in satellite optical images using Landsat data as an example. The comparative assessment of segmentation accuracy is performed for the original U-Net design and its modifications: U-Net++, Attention U-Net, and R2 U-Net, including with weights derived from a pretrained VGG16 network. The segmentation accuracy is assessed based on the results of manual mapping of tundra lakes in northern Siberia. It is shown that more recent U-Net modifications do not provide a practically significant gain in segmentation accuracy, but increase the computational costs. A configuration based on the classic U-Net gives the best result in most cases (the average Soerens coefficient IoU = 0.88). The technique suggested and the resulting estimates can be used in analysis of modern climate trends.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.