Juliette Wind, Pierre Villeneuve, Mignon Prince Exaucé Taty, Maria Cruz Figueroa-Espinoza, Bruno Baréa, Rémi Pradelles, Erwann Durand
{"title":"改进基于三苯基膦/三苯基氧化膦 (TPP/TPPO) 的方法,利用傅立叶变换红外-ATR 对油类或脂类提取物中的氢过氧化物进行绝对准确的定量分析","authors":"Juliette Wind, Pierre Villeneuve, Mignon Prince Exaucé Taty, Maria Cruz Figueroa-Espinoza, Bruno Baréa, Rémi Pradelles, Erwann Durand","doi":"10.1002/ejlt.202400030","DOIUrl":null,"url":null,"abstract":"<p>Research on natural sources of polyunsaturated fatty acids (PUFAs) for both food and nutraceutical prospects has significantly grown in recent years. Some plant oils and lipid extracts contain carotenoids, xanthophylls, sterols, and/or phenolic compounds that can provoke a lipid hydroperoxides (LOOHs) overestimation when quantifying them using nonselective colorimetric assays. Herein, we have optimized a mid-infrared method using Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR) to quantify LOOHs in oils or lipid extracts. This method is based on the conversion of triphenylphosphine (TPP) to triphenylphosphine oxide (TPPO) in the presence of hydroperoxides, with a direct assessment of TPPO levels following the formation of an oil film on the ATR crystal's surface, allowing for a low detection limit of 0.5 mmol of LOOH kg<sup>−1</sup>. The concentration of oil and TPP, as well as the reaction time, were optimized. It was demonstrated that the presence of pigments, unsaponifiable compounds, phenolics, and/or PUFAs on oils, do not disrupt the analysis. Furthermore, the stoichiometry of the TPP/LOOH reaction was examined, confirming the reliability of the method in detecting various forms of hydroperoxides. An accelerated oxidation study was carried out and the hydroperoxide contents measured using TPP/TPPO were found to be comparable to those obtained using the ferric thiocyanate method. Our method offers a fast, simple, robust, and sensitive approach to accurately quantify hydroperoxides, regardless of the chemical composition of oil or lipid extracts.</p><p><i>Practical Application</i>: The hydroperoxide assay method outlined in this study allows for the rapid and straightforward detection of hydroperoxides in pure oil matrices. The method's elevated sensitivity facilitates the early identification of oxidation indicators in oils, especially those with significant carotenoid or xanthophyll contents since these compounds may affect the results when using methods based on colorimetric quantification of hydroperoxides. This accurate, precise, and reproducible approach requires only small quantities of test samples and chemical products, making it well suited to routine application in laboratories and industrial environments.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.202400030","citationCount":"0","resultStr":"{\"title\":\"Improving the triphenylphosphine/triphenylphosphine oxide (TPP/TPPO)-based method for the absolute and accurate quantification by FTIR-ATR of hydroperoxides in oils or lipid extracts\",\"authors\":\"Juliette Wind, Pierre Villeneuve, Mignon Prince Exaucé Taty, Maria Cruz Figueroa-Espinoza, Bruno Baréa, Rémi Pradelles, Erwann Durand\",\"doi\":\"10.1002/ejlt.202400030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Research on natural sources of polyunsaturated fatty acids (PUFAs) for both food and nutraceutical prospects has significantly grown in recent years. Some plant oils and lipid extracts contain carotenoids, xanthophylls, sterols, and/or phenolic compounds that can provoke a lipid hydroperoxides (LOOHs) overestimation when quantifying them using nonselective colorimetric assays. Herein, we have optimized a mid-infrared method using Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR) to quantify LOOHs in oils or lipid extracts. This method is based on the conversion of triphenylphosphine (TPP) to triphenylphosphine oxide (TPPO) in the presence of hydroperoxides, with a direct assessment of TPPO levels following the formation of an oil film on the ATR crystal's surface, allowing for a low detection limit of 0.5 mmol of LOOH kg<sup>−1</sup>. The concentration of oil and TPP, as well as the reaction time, were optimized. It was demonstrated that the presence of pigments, unsaponifiable compounds, phenolics, and/or PUFAs on oils, do not disrupt the analysis. Furthermore, the stoichiometry of the TPP/LOOH reaction was examined, confirming the reliability of the method in detecting various forms of hydroperoxides. An accelerated oxidation study was carried out and the hydroperoxide contents measured using TPP/TPPO were found to be comparable to those obtained using the ferric thiocyanate method. Our method offers a fast, simple, robust, and sensitive approach to accurately quantify hydroperoxides, regardless of the chemical composition of oil or lipid extracts.</p><p><i>Practical Application</i>: The hydroperoxide assay method outlined in this study allows for the rapid and straightforward detection of hydroperoxides in pure oil matrices. The method's elevated sensitivity facilitates the early identification of oxidation indicators in oils, especially those with significant carotenoid or xanthophyll contents since these compounds may affect the results when using methods based on colorimetric quantification of hydroperoxides. This accurate, precise, and reproducible approach requires only small quantities of test samples and chemical products, making it well suited to routine application in laboratories and industrial environments.</p>\",\"PeriodicalId\":11988,\"journal\":{\"name\":\"European Journal of Lipid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.202400030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Lipid Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202400030\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202400030","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Improving the triphenylphosphine/triphenylphosphine oxide (TPP/TPPO)-based method for the absolute and accurate quantification by FTIR-ATR of hydroperoxides in oils or lipid extracts
Research on natural sources of polyunsaturated fatty acids (PUFAs) for both food and nutraceutical prospects has significantly grown in recent years. Some plant oils and lipid extracts contain carotenoids, xanthophylls, sterols, and/or phenolic compounds that can provoke a lipid hydroperoxides (LOOHs) overestimation when quantifying them using nonselective colorimetric assays. Herein, we have optimized a mid-infrared method using Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR) to quantify LOOHs in oils or lipid extracts. This method is based on the conversion of triphenylphosphine (TPP) to triphenylphosphine oxide (TPPO) in the presence of hydroperoxides, with a direct assessment of TPPO levels following the formation of an oil film on the ATR crystal's surface, allowing for a low detection limit of 0.5 mmol of LOOH kg−1. The concentration of oil and TPP, as well as the reaction time, were optimized. It was demonstrated that the presence of pigments, unsaponifiable compounds, phenolics, and/or PUFAs on oils, do not disrupt the analysis. Furthermore, the stoichiometry of the TPP/LOOH reaction was examined, confirming the reliability of the method in detecting various forms of hydroperoxides. An accelerated oxidation study was carried out and the hydroperoxide contents measured using TPP/TPPO were found to be comparable to those obtained using the ferric thiocyanate method. Our method offers a fast, simple, robust, and sensitive approach to accurately quantify hydroperoxides, regardless of the chemical composition of oil or lipid extracts.
Practical Application: The hydroperoxide assay method outlined in this study allows for the rapid and straightforward detection of hydroperoxides in pure oil matrices. The method's elevated sensitivity facilitates the early identification of oxidation indicators in oils, especially those with significant carotenoid or xanthophyll contents since these compounds may affect the results when using methods based on colorimetric quantification of hydroperoxides. This accurate, precise, and reproducible approach requires only small quantities of test samples and chemical products, making it well suited to routine application in laboratories and industrial environments.
期刊介绍:
The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects.
Following is a selection of subject areas which are of special interest to EJLST:
Animal and plant products for healthier foods including strategic feeding and transgenic crops
Authentication and analysis of foods for ensuring food quality and safety
Bioavailability of PUFA and other nutrients
Dietary lipids and minor compounds, their specific roles in food products and in nutrition
Food technology and processing for safer and healthier products
Functional foods and nutraceuticals
Lipidomics
Lipid structuring and formulations
Oleochemistry, lipid-derived polymers and biomaterials
Processes using lipid-modifying enzymes
The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).