自然对流方程的并行有限元离散化方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yueqiang Shang
{"title":"自然对流方程的并行有限元离散化方案","authors":"Yueqiang Shang","doi":"10.1007/s10915-024-02601-6","DOIUrl":null,"url":null,"abstract":"<p>This article presents a parallel finite element discretization scheme for solving numerically the steady natural convection equations, where a fully overlapping domain decomposition technique is used for parallelization. In this scheme, each processor computes independently a local solution in its subdomain using a mesh that covers the entire domain. It has a small mesh size <i>h</i> around the subdomain and a large mesh size <i>H</i> away from the subdomain. The discretization scheme is easy to implement based on existing serial software. It can yield an optimal convergence rate for the approximate solutions with suitable algorithmic parameters. Compared with the standard finite element method, the scheme is able to obtain an approximate solution of comparable accuracy with considerable reduction in computational time. Theoretical and numerical results show the promise of the scheme, where numerical simulation results for some benchmark problems such as the buoyancy-driven square cavity flow, right-angled triangular cavity flow and sinusoidal hot cylinder flow are provided.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Parallel Finite Element Discretization Scheme for the Natural Convection Equations\",\"authors\":\"Yueqiang Shang\",\"doi\":\"10.1007/s10915-024-02601-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents a parallel finite element discretization scheme for solving numerically the steady natural convection equations, where a fully overlapping domain decomposition technique is used for parallelization. In this scheme, each processor computes independently a local solution in its subdomain using a mesh that covers the entire domain. It has a small mesh size <i>h</i> around the subdomain and a large mesh size <i>H</i> away from the subdomain. The discretization scheme is easy to implement based on existing serial software. It can yield an optimal convergence rate for the approximate solutions with suitable algorithmic parameters. Compared with the standard finite element method, the scheme is able to obtain an approximate solution of comparable accuracy with considerable reduction in computational time. Theoretical and numerical results show the promise of the scheme, where numerical simulation results for some benchmark problems such as the buoyancy-driven square cavity flow, right-angled triangular cavity flow and sinusoidal hot cylinder flow are provided.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02601-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02601-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于数值求解稳定自然对流方程的并行有限元离散化方案,其中采用了完全重叠域分解技术进行并行化。在该方案中,每个处理器使用覆盖整个域的网格独立计算其子域中的局部解。子域周围的网格尺寸 h 较小,远离子域的网格尺寸 H 较大。这种离散化方案在现有的序列软件基础上很容易实现。只要有合适的算法参数,它就能获得最佳的近似解收敛速度。与标准有限元方法相比,该方案能够获得精度相当的近似解,同时大大减少了计算时间。理论和数值结果表明了该方案的前景,其中提供了一些基准问题的数值模拟结果,如浮力驱动的方形空腔流、直角三角形空腔流和正弦热圆柱体流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Parallel Finite Element Discretization Scheme for the Natural Convection Equations

A Parallel Finite Element Discretization Scheme for the Natural Convection Equations

This article presents a parallel finite element discretization scheme for solving numerically the steady natural convection equations, where a fully overlapping domain decomposition technique is used for parallelization. In this scheme, each processor computes independently a local solution in its subdomain using a mesh that covers the entire domain. It has a small mesh size h around the subdomain and a large mesh size H away from the subdomain. The discretization scheme is easy to implement based on existing serial software. It can yield an optimal convergence rate for the approximate solutions with suitable algorithmic parameters. Compared with the standard finite element method, the scheme is able to obtain an approximate solution of comparable accuracy with considerable reduction in computational time. Theoretical and numerical results show the promise of the scheme, where numerical simulation results for some benchmark problems such as the buoyancy-driven square cavity flow, right-angled triangular cavity flow and sinusoidal hot cylinder flow are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信