{"title":"连续 -1$-1$超几何正交多项式","authors":"Jonathan Pelletier, Luc Vinet, Alexei Zhedanov","doi":"10.1111/sapm.12728","DOIUrl":null,"url":null,"abstract":"<p>The study of <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$-1$</annotation>\n </semantics></math> orthogonal polynomials viewed as <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>→</mo>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$q\\rightarrow -1$</annotation>\n </semantics></math> limits of the <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>-orthogonal polynomials is pursued. This paper presents the continuous polynomials part of the <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$-1$</annotation>\n </semantics></math> analog of the <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>-Askey scheme. A compendium of the properties of all the continuous <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$-1$</annotation>\n </semantics></math> hypergeometric polynomials and their connections is provided.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12728","citationCount":"0","resultStr":"{\"title\":\"Continuous \\n \\n \\n −\\n 1\\n \\n $-1$\\n hypergeometric orthogonal polynomials\",\"authors\":\"Jonathan Pelletier, Luc Vinet, Alexei Zhedanov\",\"doi\":\"10.1111/sapm.12728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$-1$</annotation>\\n </semantics></math> orthogonal polynomials viewed as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>→</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$q\\\\rightarrow -1$</annotation>\\n </semantics></math> limits of the <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>-orthogonal polynomials is pursued. This paper presents the continuous polynomials part of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$-1$</annotation>\\n </semantics></math> analog of the <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>-Askey scheme. A compendium of the properties of all the continuous <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$-1$</annotation>\\n </semantics></math> hypergeometric polynomials and their connections is provided.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"153 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12728\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12728\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12728","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The study of orthogonal polynomials viewed as limits of the -orthogonal polynomials is pursued. This paper presents the continuous polynomials part of the analog of the -Askey scheme. A compendium of the properties of all the continuous hypergeometric polynomials and their connections is provided.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.