Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema
{"title":"通过成对比较进行在线排名汇总的随机迭代法","authors":"Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema","doi":"10.1007/s10543-024-01024-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic iterative methods for online rank aggregation from pairwise comparisons\",\"authors\":\"Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema\",\"doi\":\"10.1007/s10543-024-01024-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01024-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01024-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Stochastic iterative methods for online rank aggregation from pairwise comparisons
In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.