通过成对比较进行在线排名汇总的随机迭代法

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema
{"title":"通过成对比较进行在线排名汇总的随机迭代法","authors":"Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema","doi":"10.1007/s10543-024-01024-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic iterative methods for online rank aggregation from pairwise comparisons\",\"authors\":\"Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema\",\"doi\":\"10.1007/s10543-024-01024-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01024-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01024-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了大规模排序问题,即给定一组(可能是非冗余的)成对比较,并希望得到这些比较所解释的基本排序。我们表明,可以利用随机梯度下降方法来提供收敛到揭示基本排名的解决方案,同时只需要低内存操作。我们介绍了这种方法的几种变体,当成对比较存在噪声时(即某些比较不尊重基本排序),这些变体可以在速度和收敛性之间做出权衡。我们证明了几乎肯定收敛的理论结果,并研究了几种情况,包括完全观察、部分观察和噪声观察。我们的经验结果让我们深入了解了所需的观察次数以及这些测量中可容忍的噪声程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic iterative methods for online rank aggregation from pairwise comparisons

Stochastic iterative methods for online rank aggregation from pairwise comparisons

In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信