{"title":"弱奇异内核分式积分微分方程的非连续伽勒金方法 hp 版本","authors":"Yanping Chen, Zhenrong Chen, Yunqing Huang","doi":"10.1007/s10543-024-01026-9","DOIUrl":null,"url":null,"abstract":"<p>This paper suggests an <i>hp</i>-discontinuous Galerkin approach for the fractional integro-differential equations with weakly singular kernels. The key idea behind our method is to first convert the fractional integro-differential equations into the second kind of Volterra integral equations, and then solve the equivalent integral equations using the <i>hp</i>-discontinuous Galerkin method. We establish prior error bounds in the <span>\\(L^{2}\\)</span>-norm that is entirely explicit about the local mesh sizes, local polynomial degrees, and local regularities of the exact solutions. The use of geometrically refined meshes and linearly increasing approximation orders demonstrates, in particular, that exponential convergence is achievable for solutions with endpoint singularities. Numerical results indicate the usefulness of the proposed method.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"33 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An hp-version of the discontinuous Galerkin method for fractional integro-differential equations with weakly singular kernels\",\"authors\":\"Yanping Chen, Zhenrong Chen, Yunqing Huang\",\"doi\":\"10.1007/s10543-024-01026-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper suggests an <i>hp</i>-discontinuous Galerkin approach for the fractional integro-differential equations with weakly singular kernels. The key idea behind our method is to first convert the fractional integro-differential equations into the second kind of Volterra integral equations, and then solve the equivalent integral equations using the <i>hp</i>-discontinuous Galerkin method. We establish prior error bounds in the <span>\\\\(L^{2}\\\\)</span>-norm that is entirely explicit about the local mesh sizes, local polynomial degrees, and local regularities of the exact solutions. The use of geometrically refined meshes and linearly increasing approximation orders demonstrates, in particular, that exponential convergence is achievable for solutions with endpoint singularities. Numerical results indicate the usefulness of the proposed method.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01026-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01026-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
An hp-version of the discontinuous Galerkin method for fractional integro-differential equations with weakly singular kernels
This paper suggests an hp-discontinuous Galerkin approach for the fractional integro-differential equations with weakly singular kernels. The key idea behind our method is to first convert the fractional integro-differential equations into the second kind of Volterra integral equations, and then solve the equivalent integral equations using the hp-discontinuous Galerkin method. We establish prior error bounds in the \(L^{2}\)-norm that is entirely explicit about the local mesh sizes, local polynomial degrees, and local regularities of the exact solutions. The use of geometrically refined meshes and linearly increasing approximation orders demonstrates, in particular, that exponential convergence is achievable for solutions with endpoint singularities. Numerical results indicate the usefulness of the proposed method.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.