萨夫曼-泰勒问题和几组显著积分等式

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. S. Fokas, K. Kalimeris
{"title":"萨夫曼-泰勒问题和几组显著积分等式","authors":"A. S. Fokas,&nbsp;K. Kalimeris","doi":"10.1111/sapm.12734","DOIUrl":null,"url":null,"abstract":"<p>The methodology based on the so-called global relation, introduced by the first author, has recently led to the derivation of a novel nonlinear integral-differential equation characterizing the classical problem of the Saffman–Taylor fingers with nonzero surface tension. In the particular case of zero surface tension, this equation is satisfied by the explicit solution obtained by Saffman and Taylor. Here, first, for the case of zero surface tension, we present a new nonlinear integrodifferential equation characterizing the Saffman–Taylor fingers. Then, by using the explicit Saffman–Taylor solution valid for the particular case of zero surface tension, we show that the above equations give rise to sets of remarkable integral trigonometric identities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12734","citationCount":"0","resultStr":"{\"title\":\"The Saffman–Taylor problem and several sets of remarkable integral identities\",\"authors\":\"A. S. Fokas,&nbsp;K. Kalimeris\",\"doi\":\"10.1111/sapm.12734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The methodology based on the so-called global relation, introduced by the first author, has recently led to the derivation of a novel nonlinear integral-differential equation characterizing the classical problem of the Saffman–Taylor fingers with nonzero surface tension. In the particular case of zero surface tension, this equation is satisfied by the explicit solution obtained by Saffman and Taylor. Here, first, for the case of zero surface tension, we present a new nonlinear integrodifferential equation characterizing the Saffman–Taylor fingers. Then, by using the explicit Saffman–Taylor solution valid for the particular case of zero surface tension, we show that the above equations give rise to sets of remarkable integral trigonometric identities.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12734\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

由第一位作者提出的基于所谓全局关系的方法,最近导致推导出一个新的非线性积分微分方程,该方程描述了表面张力不为零的萨夫曼-泰勒手指经典问题的特征。在表面张力为零的特殊情况下,该方程满足 Saffman 和 Taylor 所获得的显式解。在此,我们首先针对表面张力为零的情况,提出一个新的非线性积分微分方程来描述 Saffman-Taylor 手指的特征。然后,通过使用对表面张力为零的特殊情况有效的 Saffman-Taylor 显式解,我们证明上述方程产生了一组显著的积分三角等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Saffman–Taylor problem and several sets of remarkable integral identities

The Saffman–Taylor problem and several sets of remarkable integral identities

The methodology based on the so-called global relation, introduced by the first author, has recently led to the derivation of a novel nonlinear integral-differential equation characterizing the classical problem of the Saffman–Taylor fingers with nonzero surface tension. In the particular case of zero surface tension, this equation is satisfied by the explicit solution obtained by Saffman and Taylor. Here, first, for the case of zero surface tension, we present a new nonlinear integrodifferential equation characterizing the Saffman–Taylor fingers. Then, by using the explicit Saffman–Taylor solution valid for the particular case of zero surface tension, we show that the above equations give rise to sets of remarkable integral trigonometric identities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信